Data Wrangling and Data Analysis

Data Streams

Hakim Qahtan

Department of Information and Computing Sciences

Utrecht University

Topics for Today

- Mining Data Streams

Reading Material

- Mining of Massive Datasets
- Chapter 4

3

Large Hadron Collider generates 40TB data per second

YouTThbe

A Boeing Jet Engine
creates 20TB
information every Hour

YouTube viewers watch
over one billion hours of videos on its platform every single day

Applications

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering \& industrial processes: power supply \& manufacturing
- Sensor, monitoring \& surveillance: video streams
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)

Characteristics of Data Streams

- Entire data is not available
- Data arrives (more likely) at a high speed rate
- The system cannot store the entire stream, but only a small fraction
- Huge volume of continuous data (possibly infinite)
- Requires single scan algorithms (can only have one look)
- Distribution is non-stationary
- Requires fast, real-time response

General Stream Processing Model

How can we perform critical calculations on data streams using a limited size of memory?

Handling Data Streams

- Online learning
- Sampling data from data streams
- Windowing functions (models)

Online Learning

- Main idea: perform small changes to update the model
- Training: use the first batch of the data to train a model
- Update: upon the arrival of a new samples from the stream, slightly update the model

$$
\begin{aligned}
& w_{1} \leftarrow 0 \\
& \text { FOR } t=1 \text { to } T \text { DO } \\
& \qquad w_{t+1} \leftarrow w_{t}-\eta_{t} l\left(w_{t}^{\top} x_{t}, y_{t}\right)
\end{aligned}
$$

- Problem: concept drifts

Sampling Data Stream

Sampling from Data Streams

Since we cannot store the entire stream, one obvious approach is to store a sample

Two different problems:

1. Sample a fixed proportion of elements in the stream (say 1 in 10)
2. Maintain a random sample of fixed size over a potentially infinite stream

- At any "time" t, we would like a random sample of s elements
- What is the property of the sample we want to maintain? For all time steps k, each of the k elements seen so far has equal prob. of being sampled

Sampling from Data Streams - Sample a fixed proportion

Assume we have space to store $1 / 10$-th of the stream

- Naïve solution:
- Generate a random integer in [0..9] for each query
- Store the sample if the integer is 0 , otherwise discard
- Problem:
- As the stream grows, the sample size will grow also

Sampling from Data Streams - Sample a fixed Size sample

- Suppose we need to maintain a random sample S of size exactly s tuples (examples)
- E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time t we have seen n items
- Each item is in the sample S with equal prob. s / n

Sampling from Data Streams - Sample a fixed Size sample

- How to think about the problem: say $s=4$
- Stream: axcyzkc deg...
- We need to maintain:
- When $n=5$, each of the first 5 tuples is included in the sample S with equal prob.
- When $n=7$, each of the first 7 tuples is included in the sample S with equal prob.
- Impractical solution:
- store the n tuples seen so far
- pick s at random

Sampling from Data Streams - Reservoir Sampling

- Store all the first s elements of the stream to S
- Suppose we have seen $n-1$ elements, and now the n-th element arrives $(n>s)$
- With probability s / n, keep the n-th element, else discard it
- If we picked the n-th element, then it replaces one of the s elements in the sample S, picked uniformly at random

Sampling from Data Streams - Reservoir Sampling

Sampling from Data Streams - Reservoir Sampling

Sampling from Data Streams - Reservoir Sampling

Windowing Models

Windowing Models

- A useful model of stream processing is that queries are about a window of length N - the N most recent elements received
- Interesting cases:
- N is so large that the data cannot be stored in memory, or even on disk
- Or, there are so many streams that windows, for all, cannot be stored
- Amazon example:
- For every product X we keep $0 / 1$ stream of whether that product was sold in the n-th transaction
- We want answer queries, how many times have we sold X in the last k sales

Sliding Window

- Upon the arrival of a new item from the stream
- Discard the oldest item

Tumbling Window (Disjoint Windows)

- Upon the arrival of a new batch of items (of size N) from the stream
- Discard the previous batch

Hopping Window

- Upon the arrival of a new (Step) of items from the stream
- Keep the last N items only

Exponentially Decaying Windows

- Main Idea:

- Every sample in the stream is important
- Different levels of importance
- Recent values are more important
- How it works:
- Pick a constant $c \in[0,1]$
- The weight of the element (item) arrived at time t is proportional to $(1-c)^{t}$
- $f_{t}=c f\left(a_{t}\right)+(1-c) \sum_{i=1}^{t} f\left(a_{i}\right)$

Sliding vs Exponentially Decaying Windows

- Important property:
- Sum over all weights $\sum_{t}(1-c)^{t}$ is $\frac{\mathbf{1}}{\mathbf{1 - (1 - c)}}=\frac{\mathbf{1}}{\boldsymbol{c}}$

Examples of Queries over Data Streams

Querying Data Streams (Examples)

- Filtering a data stream
- Select elements with property x from the stream
- Email spam filtering
- Counting distinct elements
- Number of distinct elements in the last k elements of the stream
- How many distinct products have we sold in the last week?
- Estimating moments
- Estimate avg./std. dev. of last k elements
- Finding frequent elements
- What are "currently" the most popular movies?

Filtering Data Streams

Filtering Data Streams

- Given: a set of Keys S
- Determine: which tuples of the stream are in S
- Obvious solution: Hash Table
- Problem: we may not have enough memory

Filtering Data Streams

- If the item in S (set of keys), return it.
- If the item is not in S, it may still be returned (no FNs, but FPs)

Filtering Data Streams (discussion)

- We have:
- $|S|=1 \mathrm{M}$ (We have one million legitimate email addresses)
- $|\mathrm{B}|=1 \mathrm{MB}$ (Bit array with 8 million bits)
- Question:
- What is the probability that an email with un-registered address is going through?

Filtering Data Streams (discussion)

- Approximately $1 / 8$ of the bits will be set to 1
- Given a spam email, it will hash to a bit that includes 1 with $p=1 / 8$
- Approximately $(1 / 8=0.125)$ of the spam emails may go through.
- This is called the false positive ratio (FP ratio)

Filtering Data Streams (discussion)

- More accurate estimation using throwing darts
- $|S|=M,|B|=N$
- Probability of hitting $p_{h}=\frac{1}{N}$ and missing $p_{m}=1-\frac{1}{N}$
- After M trials, $p_{m}=\left(1-\frac{1}{N}\right)^{M}=\left(1-\frac{1}{N}\right)^{N\left(\frac{M}{N}\right)}=\left(\left(1-\frac{1}{N}\right)^{N}\right)^{\left(\frac{M}{N}\right)}$
- $\left(1-\frac{1}{N}\right)^{N} \underset{N \rightarrow \infty}{\longrightarrow} \frac{1}{e}$
- Hence $p_{m}=e^{-\frac{M}{N}}, p_{h}=1-e^{-\frac{M}{N}}$
- $\mathrm{M}=1 \mathrm{M}$ and $\mathrm{N}=8 \mathrm{M}$ then $p_{h}=1-e^{-0.125}=0.1175$ (FP ratio)
- How can we reduce the false positive rate?

Bloom Filters

- We have:
- $|S|=M,|B|=N$
- Use k hashing functions $H=h_{1}, h_{2}, \ldots, h_{k}$
$B \leftarrow$ zeros
FOR $m \in M$ DO
FOR $h_{i} \in H$ DO

$$
B\left[h_{i}(m)\right] \leftarrow 1
$$

Bloom Filters

- Upon receiving an item x from the stream

$$
\begin{aligned}
& \text { exists } \leftarrow 1 \\
& \text { FOR } h_{i} \in H \text { DO } \\
& \text { if } \quad B\left[h_{i}(x)\right]==0 \text { DO } \\
& \quad \text { exists } \leftarrow 0 \\
& \text { Return (exists) }
\end{aligned}
$$

- Declare x is in S if the items hashes to a bit with 1 for every hashing function in H

Bloom Filters

- Using the previous analysis
- We have $k M$ trials towards the N targets
- Fractions of 1 s is $\left(1-\mathrm{e}^{-\frac{k M}{N}}\right)$
- Hitting k 1s for the k hashing functions with probability $p_{h}=\left(1-\mathrm{e}^{-\frac{k M}{N}}\right)^{k}$
- is the probability of a FP

Bloom Filters

- When $(|S|=M=1 M$ and $|B|=N=8 M)$:
- $k=1:\left(1-\mathrm{e}^{-0.125}\right)^{1}=0.1175$
- $k=2:\left(1-\mathrm{e}^{-0.25}\right)^{2}=0.0489$
- For this example, optimal case when $k=6:\left(1-\mathrm{e}^{-0.75}\right)^{6}=0.0216$
- $k=7:\left(1-\mathrm{e}^{-0.7 / 8}\right)^{7}=0.0229$

Counting Distinct Elements

Counting Distinct Elements

- Problem:
- Data stream consists of a universe of elements
- Maintain a count of the number of distinct elements seen so far
- Obvious approach: Maintain the set of elements seen so far
- That is, keep a hash table of all the distinct elements seen so far

Example Queries

- How many different words are found among the Web pages being crawled at a site?
- Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct customers accepted to receive promotional offers during the last month?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log _{2}(N)$ bits
- For each stream element a, let $r(a)$ be the number of trailing Os in $h(a)$
- $r(a)=$ position of first 1 counting from the right
- E.g., say $h(a)=12$, then 12 is 1100 in binary, so $r(a)=2$
- Record $R=$ the maximum $r(a)$ seen
- $R=\max _{a} r(a)$, over all the items a seen so far
- Estimated number of distinct elements $=2^{R}$

Classification

Classifying Data Streams

- Offline classification
- train a classifier (model) using labelled examples
- the model is used to predict the label for unlabelled instances
- Best practices
- split the labelled dataset into train/validate/test
- maybe use cross-validation to train accurate model
- Online (streaming) classification
- no clear separation between train/validate/test sets

Classifying Data Streams

- Restrictions
- process one instance at a time, and inspect it (at most) once
- limited time to process each instance
- limited memory
- be ready to give predictions at any time
- adapt to changes (concept drifts)

Hoeffding Tree (HT)

- With high probability, HT has similar accuracy as classical DT
- Uses small sample - based on Hoeffding bound
- X is a random variable
- R is the domain of X
- n is the number of observations
- $\bar{\mu}$ is the sample average (computed using the n observations)
- With prob. $1-\delta$, the distance from μ to $\bar{\mu}$ is at most ϵ, where:

$$
\epsilon=\sqrt{\frac{R^{2} \ln \left(\frac{1}{\delta}\right)}{2 n}}
$$

Hoeffding Tree (HT) Algorithm

Input:
S: sequence of observations
A: set of attributes \{A1, A2, ..., Am\}
G(.): Attribute Selection Measure
$\delta:$ desired accuracy
Procedure:
FOR each observation in S :
compute G(Ai), $1 \leq i \leq m$
retrieve Ap, Aq (with two highest G value)
if ($\mathrm{G}(\mathrm{Ap}$) $-\mathrm{G}(\mathrm{Aq})>\epsilon)$: split on Ap
recurse to next node break

HT Strengths and Weaknesses

- Strengths
- Scales better than traditional methods
- Incremental: new examples are added as they come
- Weaknesses
- Could spend a lot of time with ties
- Memory used with tree expansion
- Number of candidate attributes

Very Fast Decision Tree (VFDT)

- Modifications to Hoeffding Tree
- Near-ties broken more aggressively
- G computed every $n_{\text {min }}$ (a user defined parameter)
- Deactivates certain leaves to save memory
- Poor attributes dropped
- Initialize with traditional learner
- Compare to Hoeffding Tree: Better time and memory
- Compare to traditional decision tree
- Similar accuracy
- Better runtime with 1.61 million examples
- 21 minutes for VFDT compared to 24 hours for C4.5

Clustering

Clustering Data Streams

- Input: Data stream points from metric space
- Goal: Find k clusters in the stream (based on k-median algorithm)
- Constant factor approximation algorithm
- Two step algorithm:
- Depending on the size of memory, divide the batch of data into l sets $\left(S_{1}, \ldots, S_{l}, l \gg k\right)$
- Select one center c_{i} from each $S_{i}, 1 \leq i \leq l$
- Assign each observation in S_{i} to its closest center
- Let $C=\left\{c_{1}, \ldots, c_{l}\right\}$ with each center weighted by number of points assigned to it
- Cluster C to find k centers (medians)

CluStream

- Divide the clustering process into online and offline components
- Online component: stores summary statistics about the stream data
- A micro-cluster for n points is defined as a $(2 . d+3)$ tuple $\left(\overline{C F 2^{x}}, \overline{C F 1^{x}}, C F 2^{t}, C F 1^{t}, n\right)$
- Offline component: answers various user questions based on the stored summary statistics
- Initialization
- Use the first batch from the stream to cluster the data into q micro-cluster
- q is significantly larger than the actual number of clusters

CluStream

- Online incremental update of micro-clusters
- Upon the arrival of a new observation
- Observation is within max-boundary of one micro-cluster, insert into the micro-cluster
- Otherwise, create a new cluster
- May delete obsolete micro-cluster or merge two closest ones
- Query-based macro-clustering (offline)
- Based on a user-specified time-horizon h and the number of macro-clusters
K, compute macro-clusters using the k -medians (or k-means) algorithm

Extra Material for Interested Students

Does each sample have the same probability to be in the reservoir?

Sampling from Data Streams - Reservoir Sampling

- Claim: each element is kept in the reservoir with prob. $p=s / n$
- Proof: We prove that using mathematical induction
- Base case:
- After we see $n=s$ elements, the sample S has the desired property
- Each sample, (out of $n=s$ elements), is in the sample with probability $s / s=1$
- Inductive hypothesis:
- After n elements, the sample S contains each element seen so far with prob. $\frac{s}{n}$
- Now element $\mathrm{n}+1$ arrives

Sampling from Data Streams - Reservoir Sampling

- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$
\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)=\frac{n}{n+1}
$$

Element $\mathbf{n + 1}$ discarded

Element $\mathbf{n + 1}$ Element in the not discarded sample not picked

- So, at time n, tuples in S were there with prob. s / n
- Time $n \rightarrow n+1$, tuple stayed in S with prob. $n /(n+1)$
- So prob. tuple is in S at time $n+1=\frac{s}{n} \cdot \frac{n}{n+1}=\frac{s}{n+1}$

Flajolet-Martin Approach for Counting Distinct Items in Data Streams

Why Flajolet-Martin Approach Works?

- Intuition: for a given element a
- h hashes a to any of the M keys with the same probability
- h will have a sequence of $\left\lceil\log _{2} M\right\rceil$ bits
- 2^{-r} is the ratio of the keys that have a tail of 0's
- Approximately 50% of the keys will hash to ${ }^{* * * * * * * *} 0$
- Approximately 25% of the keys will hash to ${ }^{* * * * * *} 00$
- Example, if a key hashes to ${ }^{* * * * *} 100$, probably 4 keys were hashed (2^{2} keys)

Why Flajolet-Martin Approach Works?

- Formally:
- We use p_{r} to be the probability of finding a tail of r zeros and \tilde{p}_{r} is the probability of finding NO tail of r zeros, show:
- $p_{r} \xrightarrow[M \gg 2^{r}]{ } 1$ and $p_{r} \xrightarrow[M \ll 2^{r}]{ } 0$
- $M=|S|$ is the number of keys - distinct elements from the steam
- Proof:
- $h(x)$ hashed the elements uniformly at random
- $p_{r}(h(x))$ has a tail of $r 0^{\prime}$ s is 2^{-r}
- $\tilde{p}_{r}(h(x))=1-2^{-r}$ (probability of finding NO tail of r O's)

Why Flajolet-Martin Approach Works?

- After hashing the M keys,
- $\tilde{p}_{r}(h(x))=\left(1-2^{-r}\right)^{M}$ (prob. that $h(x)$ has NO tail of length $r, \forall x \in$ S)
- $\tilde{p}_{r}(h(x))=\left(1-2^{-r}\right)^{M}=\left(1-2^{-r}\right)^{2^{r}\left(M 2^{-r}\right)} \underset{2^{r} \rightarrow \infty}{\longrightarrow} e^{-M 2^{-r}}$
- When $M \ll 2^{r}$ then $\tilde{p}_{r}(h(x)) \rightarrow 1$ and $p_{r}(h(x)) \rightarrow 0$
- When $M \gg 2^{r}$ then $\tilde{p}_{r}(h(x)) \rightarrow 0$ and $p_{r}(h(x)) \rightarrow 1$

