Data Wrangling and Data Analysis

Data Streams

Hakim Qahtan

Department of Information and Computing Sciences

Utrecht University

Topics for Today

• Mining Data Streams

Reading Material

- Mining of Massive Datasets
 - Chapter 4 (4.1 4.4)

A Boeing Jet Engine creates 20TB information every Hour

YouTube viewers watch over one billion hours of videos on its platform every single day

Applications

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering & industrial processes: power supply & manufacturing
- Sensor, monitoring & surveillance: video streams
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)

Characteristics of Data Streams

- Entire data is not available
- Data arrives (more likely) at a high-speed rate
- The system cannot store the entire stream, but only a small fraction
- Huge volume of continuous data (possibly infinite)
 - Requires single scan algorithms (can only have one look)
- Distribution is non-stationary
 - Requires fast, real-time response

7

General Stream Processing Model

Utrecht University

How can we perform critical calculations on data streams using a limited size of memory?

Handling Data Streams

- Online learning
- Sampling data from data streams
- Windowing functions (models)

Online Learning

- Main idea: perform small changes to update the model
- Training: use the first batch of the data to train a model
- Updating: upon the arrival of a new samples from the stream, slightly update the model $w_1 \leftarrow 0$ FOR t = 1 to T DO Training Updating Upon the arrival of new sample

$$w_{t+1} \leftarrow w_t - \eta_t l(w_t^{\mathsf{T}} x_t, y_t)$$

 $w_{t+1} \leftarrow w_t - \eta_t l(w_t^{\mathsf{T}} x_t, y_t)$

• Problem: concept drifts

Sampling Data Stream

Sampling from Data Streams

Since we cannot store the entire stream, one obvious approach is to store a sample

Two different problems:

- 1. Sample a fixed proportion of elements in the stream (say 1 in 10)
- 2. Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" *t*, we would like a random sample of *s* elements
 - What are the properties of the sample we want to maintain?

Sampling from Data Streams

Since we cannot store the entire stream, one obvious approach is to store a sample

Two different problems:

- 1. Sample a fixed proportion of elements in the stream (say 1 in 10)
- 2. Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" *t*, we would like a random sample of *s* elements
 - Which property of the sample we want to maintain?
 - For all time steps k, each of the k elements seen so far has equal probability of being sampled; OR
 - The sample is representative of the whole stream

Sampling from Data Streams – Sample a fixed proportion

Assume we have space to store 1/10-th of the stream

- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the sample if the integer is 0, otherwise discard
- Problem:
 - As the stream grows, the sample size will grow also

Sampling from Data Streams – Sample a fixed Size sample

- Suppose we need to maintain a random sample S of size exactly s tuples (examples)
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time t we have seen n items
 - Each item is in the sample S with equal prob. s/n

Sampling from Data Streams – Sample a fixed Size sample

- How to think about the problem: say s = 4
- Stream: a x c y z k c d e g...
- We need to maintain:
 - When n = 5, each of the first 5 tuples is included in the sample S with equal prob.
 - When n = 7, each of the first 7 tuples is included in the sample S with equal prob.
- Impractical solution:
 - store the *n* tuples seen so far
 - pick *s* at random

- Store all the first *s* elements of the stream to *S*
- Suppose we have seen n 1 elements, and now the *n*-th element arrives (n > s)
- With probability s/n, keep the n-th element, else discard it
- If we picked the *n*-th element, then it replaces one of the *s* elements in the sample *S*, picked uniformly at random

Windowing Models

Windowing Models

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received
- Interesting cases:
 - N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows, for all, cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold X in the last k sales

Sliding Window

- Upon the arrival of a new item from the stream
 - Discard the oldest item

Tumbling Window (Disjoint Windows)

- Upon the arrival of a new batch of items (of size N) from the stream
 - Discard the previous batch

Hopping Window

- Upon the arrival of a new (Step) of items from the stream
 - Keep the last N items only

Exponentially Decaying Windows

- Main Idea:
 - Every sample in the stream is important
 - Different levels of importance
 - Recent values are more important
- How it works:
 - Pick a constant $c \in [0,1]$
 - The weight of the element (item) arrived at time t is proportional to $(1-c)^t$
 - $f_t = f(a_t) + (1 c) \sum_{i=1}^t f(a_i)$

Sliding vs Exponentially Decaying Windows

• Exponentially decaying window: $\sum_{t=1}^{\infty} (1-c)^{t}$ is $\frac{1}{1-(1-c)} = \frac{1}{c} = n$

Examples of Queries over Data Streams

Querying Data Streams (Examples)

- Filtering a data stream
 - Select elements with property x from the stream
 - Email spam filtering
- Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - How many distinct products have we sold in the last week?
- Estimating moments
 - Estimate avg./std. dev. of last k elements
- Finding frequent elements
 - What are "currently" the most popular movies?

Filtering Data Streams

Filtering Data Streams

- Given: a set of Keys S
- Determine: which tuples of the stream are in *S*
- Obvious solution: Hash Table
- Problem: we may not have enough memory

Filtering Data Streams

- If the item in S (set of keys), return it.
- If the item is not in S, it may still be returned (no FNs, but FPs)

Filtering Data Streams (discussion)

- We have:
 - |S| = 1M (We have one million legitimate email addresses)
 - |B| = 1MB (Bit array with 8 million bits)
- Question:
 - What is the probability that an email with un-registered address is going through?

Filtering Data Streams (discussion)

- Approximately 1/8 of the bits will be set to 1
- Given a spam email, it will hash to a bit that includes 1 with p = 1/8
- Approximately (1/8 = 0.125) of the spam emails may go through.
 - This is called the false positive ratio (FP ratio)

Filtering Data Streams (discussion)

- More accurate estimation using throwing darts
 - |S| = M, |B| = N
 - Probability of hitting $p_h = \frac{1}{N}$ and missing $p_m = 1 \frac{1}{N}$
 - After M trials, $p_m = \left(1 \frac{1}{N}\right)^M = \left(1 \frac{1}{N}\right)^{N(\frac{M}{N})} = \left(\left(1 \frac{1}{N}\right)^N\right)^{\binom{M}{N}}$
 - $(1-\frac{1}{N})^N \xrightarrow[N \to \infty]{} \frac{1}{e}$
 - Hence $p_m = e^{-\frac{M}{N}}$, $p_h = 1 e^{-\frac{M}{N}}$
 - M = 1M and N = 8M then $p_h = 1 e^{-0.125} = 0.1175$ (FP ratio)
- How can we reduce the false positive rate?

- We have:
 - |S| = M, |B| = N
- Use k hashing functions $H = h_1, h_2, ..., h_k$
 - $B \leftarrow zeros$
 - For $m \in M$ do
 - FOR $h_i \in H$ do
 - $B[h_i(m)] \leftarrow 1$

• Upon receiving an item x from the stream

```
exists \leftarrow 1
FOR h_i \in H DO
if B[h_i(x)] == 0 DO
exists \leftarrow 0
Return (exists)
```

• Declare x is in S if the items hashes to a bit with 1 for every hashing function in H

- Using the previous analysis
- We have *kM* trials towards the *N* targets
 - Fractions of 1s is $(1 e^{-\frac{kM}{N}})$
 - Hitting k 1s for the k hashing functions with probability $p_h = \left(1 e^{-\frac{kM}{N}}\right)^k$
 - is the probability of a FP

- When (|S| = M = 1M and |B| = N = 8M):
 - $k = 1: (1 e^{-0.125})^1 = 0.1175$
 - $k = 2: (1 e^{-0.25})^2 = 0.0489$
 - For this example, optimal case when $k = 6: (1 e^{-0.75})^6 = 0.0216$

•
$$k = 7: (1 - e^{-7/8})^7 = 0.0229$$

Counting Distinct Elements

Counting Distinct Elements

- Problem:
 - Data stream consists of a universe of elements
 - Maintain a count of the number of distinct elements seen so far
- Obvious approach: Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far

Example Queries

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct customers accepted to receive promotional offers during the last month?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least log₂(N) bits
- For each stream element a, let r(a) be the number of trailing
 Os in h(a)
 - r(a) = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $R = \max_{a}(r(a))$, over all the items a seen so far
- Estimated number of distinct elements = 2^{R}

The slides after this point are not included in the final exam

Classification

Classifying Data Streams

- Offline classification
 - train a classifier (model) using labelled examples
 - the model is used to predict the label for unlabelled instances
- Best practices
 - split the labelled dataset into train/validate/test
 - maybe use cross-validation to train accurate model
- Online (streaming) classification
 - no clear separation between train/validate/test sets

Classifying Data Streams

- Restrictions
 - process one instance at a time, and inspect it (at most) once
 - limited time to process each instance
 - limited memory
 - be ready to give predictions at any time
 - adapt to changes (concept drifts)

Hoeffding Tree (HT)

- With high probability, HT has similar accuracy as classical DT
- Uses small sample based on Hoeffding bound
 - X is a random variable
 - *R* is the domain of *X*
 - *n* is the number of observations
 - $\bar{\mu}$ is the sample mean (computed using the *n* observations)
 - With prob. 1δ , the distance from μ to $\overline{\mu}$ is at most ϵ , where:

$$\epsilon = \sqrt{\frac{R^2 \ln\left(\frac{1}{\delta}\right)}{2n}}$$

Hoeffding Tree (HT) Algorithm

Input:

- S: sequence of observations
- A: set of attributes {A1, A2, ..., Am}
- G(.): Attribute Selection Measure
- $\delta\colon$ desired accuracy

Procedure:

```
FOR each observation in S:

compute G(Ai), 1 \le i \le m

retrieve Ap, Aq (with two highest G value)

if (G(Ap) - G(Aq) > \epsilon):

split on Ap

recurse to next node

break
```


HT Strengths and Weaknesses

- Strengths
 - Scales better than traditional methods
 - Incremental: new examples are added as they come
- Weaknesses
 - Could spend a lot of time with ties
 - Memory used with tree expansion
 - Number of candidate attributes

Very Fast Decision Tree (VFDT)

- Modifications to Hoeffding Tree
 - Near-ties broken more aggressively
 - *G* computed every n_{min} (a user defined parameter)
 - Deactivates certain leaves to save memory
 - Poor attributes dropped
 - Initialize with traditional learner
- Compare to Hoeffding Tree: Better time and memory
- Compare to traditional decision tree
 - Similar accuracy
 - Better runtime with 1.61 million examples
 - 21 minutes for VFDT compared to 24 hours for C4.5

Clustering

Clustering Data Streams

- Input: Data stream points from metric space
- **Goal:** Find k clusters in the stream (based on k-median algorithm)
- Constant factor approximation algorithm
 - Two step algorithm:
 - Depending on the size of memory, divide the batch of data into l sets $(S_1, ..., S_l, l \gg k)$
 - Select one center c_i from each S_i , $1 \le i \le l$
 - Assign each observation in S_i to its closest center
 - Let $C = \{c_1, \dots, c_l\}$ with each center weighted by number of points assigned to it
 - Cluster C to find k centers (medians)

CluStream

- Divide the clustering process into online and offline components
 - Online component: stores summary statistics about the stream data
 - A micro-cluster for n points is defined as a (2.d + 3) tuple $(\overline{CF2^x}, \overline{CF1^x}, CF2^t, CF1^t, n)$
 - Offline component: answers various user questions based on the stored summary statistics
- Initialization
 - Use the first batch from the stream to cluster the data into q micro-cluster
 - q is significantly larger than the actual number of clusters

CluStream

- Online incremental update of micro-clusters
 - Upon the arrival of a new observation
 - Observation is within max-boundary of one micro-cluster, insert into the micro-cluster
 - Otherwise, create a new cluster
 - May delete obsolete micro-cluster or merge two closest ones
- Query-based macro-clustering (offline)
 - Based on a user-specified time-horizon *h* and the number of macro-clusters *K*, compute macro-clusters using the k-medians (or k-means) algorithm

Wrap-Up

• We discussed

- The data streams
- Models for handling data streams
- Example queries over data streams (filtering, counting distinct elements)
- Classification and Clustering of Data streams

Extra Material for Interested Students

Does each sample have the same probability to be in the reservoir?

- Claim: each element is kept in the reservoir with prob. p = s/n
- Proof: We prove that using mathematical induction
- Base case:
 - After we see n = s elements, the sample S has the desired property
 - Each sample, (out of n = s elements), is in the sample with probability s/s = 1
- Inductive hypothesis:
 - After *n* elements, the sample *S* contains each element seen so far with prob. $\frac{s}{n}$
- Now element n+1 arrives

• Inductive step: For elements already in *S*, probability that the algorithm keeps it in *S* is:

- So, at time n, tuples in S were there with prob. s/n
- Time $n \rightarrow n + 1$, tuple stayed in S with prob. n/(n + 1)
- So prob. tuple is in S at time $n + 1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Flajolet-Martin Approach for Counting Distinct Items in Data Streams

Why Flajolet-Martin Approach Works?

- Intuition: for a given element *a*
 - *h* hashes *a* to any of the *M* keys with the same probability
 - h will have a sequence of $[log_2M]$ bits
 - 2^{-r} is the ratio of the keys that have a tail of 0's
 - Approximately 50% of the keys will hash to *******0
 - Approximately 25% of the keys will hash to *****00
 - Example, if a key hashes to *****100, probably 4 keys were hashed (2² keys)

Why Flajolet-Martin Approach Works?

- Formally:
 - We use p_r to be the probability of finding a tail of r zeros and \tilde{p}_r is the probability of finding NO tail of r zeros, show:
 - $p_r \xrightarrow[M \gg 2^r]{} 1 \text{ and } p_r \xrightarrow[M \ll 2^r]{} 0$
 - M = |S| is the number of keys distinct elements from the steam
- Proof:
 - h(x) hashed the elements uniformly at random
 - $p_r(h(x))$ has a tail of r 0's is 2^{-r}
 - $\tilde{p}_r(h(x)) = 1 2^{-r}$ (probability of finding **NO** tail of r 0's)

Why Flajolet-Martin Approach Works?

- After hashing the *M* keys,
 - $\tilde{p}_r(h(x)) = (1 2^{-r})^M$ (prob. that h(x) has NO tail of length $r, \forall x \in S$)
 - $\tilde{p}_r(h(x)) = (1 2^{-r})^M = (1 2^{-r})^{2^r(M2^{-r})} \xrightarrow{2^r \to \infty} e^{-M2^{-r}}$
 - When $M \ll 2^r$ then $\tilde{p}_r(h(x)) \to 1$ and $p_r(h(x)) \to 0$
 - When $M \gg 2^r$ then $\tilde{p}_r(h(x)) \to 0$ and $p_r(h(x)) \to 1$

