Hakim Qahtan

Department of Information and Computing Sciences

* Utrecht University
Utrecht University

Topics for Today

* Mining Data Streams

Reading Material

* Mining of Massive Datasets

* Chapter 4 (4.1 —4.4)

A 2

& F Utrecht University
WS

1) Earthquake or
2) Nodes detect .

3) Each node sei
to base station

GPS receiver
for time sync

Base station

at observatory Long-distance
; radio link (4km)

Large Hadron Collider
generates 40TB data

per second

You({ /)

Sy

£ U S Utrecht University

N

A Boeing Jet Engine
creates 20TB
information every Hour

YouTube viewers watch
over one billion hours of videos
on its platform every single day

Applications

* Telecommunication calling records

* Business: credit card transaction flows

* Network monitoring and traffic engineering

* Financial market: stock exchange

* Engineering & industrial processes: power supply & manufacturing
e Sensor, monitoring & surveillance: video streams

* Web logs and Web page click streams

e Massive data sets (even saved but random access is too expensive)

<

% Y § Utrecht University

AN

Characteristics of Data Streams

* Entire data is not available
e Data arrives (more likely) at a high-speed rate
* The system cannot store the entire stream, but only a small fraction

* Huge volume of continuous data (possibly infinite)

* Requires single scan algorithms (can only have one look)

e Distribution is non-stationary

* Requires fast, real-time response

N
§ N % Utrecht University

N

General Stream Processing Model

Ad-Hoc
Queries
...1,5,2,7,0,9,3 — Standing
Queries
a,rnv,tyhb — —— Output
Processor
...0,0,1,0,1,1,0 ——
< time / .
Streams Entering.
Each is stream is
composed of N
elements/tuples Limited D
Working
Storage Archival
~__ Storage
§ ll?’% Utrecht University ¥/

N

How can we perform critical calculations on
data streams using a limited size of memory?

N
%Té Utrecht University

Handling Data Streams

* Online learning

* Sampling data from data streams

* Windowing functions (models)

NI
£ U = Utrecht University

N

Online Learning

* Main idea: perform small changes to update the model
* Training: use the first batch of the data to train a model

* Updating: upon the arrival of a new samples from the stream, slightly

update the model
wy < 0 Upon the arrival of

FOR t=1 to T DO new sample

T
Wep1 < We — Nel(We Xg, Ye) Wiy €< W — ntl(thxt,yt)

* Problem: concept drifts

= N F Utrecht University 10

Sampling Data Stream

s
%
N

Utrecht University

Sampling from Data Streams

Since we cannot store the entire stream, one obvious approach is to

store a sample

Two different problems:
1. Sample a fixed proportion of elements in the stream (say 1 in 10)

2. Maintain a random sample of fixed size over a potentially infinite stream

e At any “time” t, we would like a random sample of s elements

* What are the properties of the sample we want to maintain?

NI
£ U = Utrecht University

N

Sampling from Data Streams

Since we cannot store the entire stream, one obvious approach is to

store a sample

Two different problems:
1. Sample a fixed proportion of elements in the stream (say 1 in 10)

2. Maintain a random sample of fixed size over a potentially infinite stream

e At any “time” t, we would like a random sample of s elements

* Which property of the sample we want to maintain?
* For all time steps k, each of the k elements seen so far has equal probability of
being sampled; OR

* The sample is representative of the whole stream

NI
£ U = Utrecht University

N

Sampling from Data Streams — Sample a fixed proportion

Assume we have space to store 1/10-th of the stream

* Naive solution:

* Generate a random integer in [0..9] for each query

» Store the sample if the integer is 0, otherwise discard

* Problem:

* As the stream grows, the sample size will grow also

NI
£ U = Utrecht University

N

Sampling from Data Streams — Sample a fixed Size sample

e Suppose we need to maintain a random sample S of size exactly s
tuples (examples)

* E.g., main memory size constraint

* Why? Don’t know length of stream in advance

e Suppose at time t we have seen n items

e Each item isin the sample S with equal prob. s/n

NI
£ U = Utrecht University

N

Sampling from Data Streams — Sample a fixed Size sample

* How to think about the problem: say s =4

. Stream:axcyzlﬁcd,eg...

 We need to maintain:

* Whenn = 5, each of the first 5 tuples is included in the sample S with equal prob.
* Whenn = 7, each of the first 7 tuples is included in the sample S with equal prob.

* Impractical solution:
 store the n tuples seen so far

e pick s at random

AWy
§ § = Utrecht University

N

Sampling from Data Streams — Reservoir Sampling

e Store all the first s elements of the streamto S

e Suppose we have seen n — 1 elements, and now
the n-th element arrives (n > s)

* With probability s/n, keep the n-th element, else discard it

* If we picked the n-th element, then it replaces one of the

s elements in the sample S, picked uniformly at random

NI
£ U = Utrecht University

N

Sampling from Data Streams — Reservoir Sampling

Discard pr0 | P30 p$0
pH0 pf0
Stream s a,|| ay|| as|| a.| as
=1
p ok 1
prl
Select p1
p=1

Reservoir === | a,|a,|as|a,|as

N
§ N % Utrecht University 18

N

Sampling from Data Streams — Reservoir Sampling

Discard
p =|1/6
Stream s> a,|| a,| as|| a4l as|| as
Select p=>5/6
Reservoir = ai|a;|az|a,|as
1 1 l
PT5 f 5 7,75
Discard y - Y _

N
§ N % Utrecht University 19

N

<My

Sampling from Data Streams — Reservoir Sampling

Discard

Stream a,|| a,

Select

Reservoir = agq| as

1
p 5 p
Discard 1

= § F Utrecht University

N

20

Windowing Models

N

Utrecht University

Windowing Models

* A useful model of stream processing is that queries are about a

window of length N —the N most recent elements received

* Interesting cases:

e N is so large that the data cannot be stored in memory, or even on disk

* Or, there are so many streams that windows, for all, cannot be stored

* Amazon example:

* For every product X we keep 0/1 stream of whether that product was sold in
the n-th transaction

* We want answer queries, how many times have we sold X in the last k sales

NI
£ U = Utrecht University

N

Sliding Window

+«——— Past Future —

gwertyuioplasdfgh

gwertyuiopalsdfgh] N

|
(o))

gwertyuiopas|ldfghjk

gwertyuiopasd{fghjkl

* Upon the arrival of a new item from the stream

e Discard the oldest item
NI 23

= § F Utrecht University

N

Tumbling Window (Disjoint Windows)

+«——— Past Future —

qwerty

gwertyjuiopas N

|
(o))

gwertyuiopas|ldfghjk

gwertyuiopasdfghjkilgmspv

e Upon the arrival of a new batch of items (of size N) from the stream

e Discard the previous batch
My

= N F Utrecht University

N

Hopping Window

+«——— Past Future —

qwerty

gwiertyuil N=6,

gwerjftyuiop

gwertyluiopas

* Upon the arrival of a new (Step) of items from the stream

* Keep the last N items only
NI

= § F Utrecht University

N

<My

Exponentially Decaying Windows

* Main ldea:
* Every sample in the stream is important
 Different levels of importance

* Recent values are more important

e How it works:

* Pick a constant ¢ € [0,1]

 The weight of the element (item) arrived at time t is proportional to (1 — ¢)?

* fr=f(a) + (1 —c¢) Xi—; f(ay)

= N F Utrecht University

N

26

Sliding vs Exponentially Decaying Windows

*c €[0,1], Iet%z n

-

=== Window of =)

* Important property:

1
length ~=n
* Sum over all weights
e Slidingwindow !, ., 1=n= %
. . . : _ Nt 1 1 _
Exponentially decaying window: },,(1 — ¢)t s o= M

N
§ N % Utrecht University 27

N

<My

Examples of Queries over Data Streams

= § F Utrecht University

N

N

28

<My

Querying Data Streams (Examples)

* Filtering a data stream
» Select elements with property x from the stream

* Email spam filtering

e Counting distinct elements

* Number of distinct elements in the last k elements of the stream

* How many distinct products have we sold in the last week?

* Estimating moments

 Estimate avg./std. dev. of last k elements

* Finding frequent elements

e What are “currently” the most popular movies?

= § F Utrecht University

N

29

Filtering Data Streams

Sy
EN

Utrecht University

<My

Filtering Data Streams

* Given: a set of Keys S

* Determine: which tuples of the stream arein S

* Obvious solution: Hash Table

* Problem: we may not have enough memory

= N F Utrecht University

N

31

Filtering Data Streams

Item Filter

Hash function h

b7
0010901011000

Drop the item.

Output the item since it may be in S.
ltem hashes to a bucket that at least one of
the items in S hashed to.

Bit array B

It hashes to a bucket set to 0 so it is surely not in S.

* If the item in S (set of keys), return it.

 If the item is not in S, it may still be returned (no FNs, but FPs)

N
§ Y % Utrecht University

N

32

<My

Filtering Data Streams (discussion)

e We have:

* |S| = 1M (We have one million legitimate email addresses)

* |B| = 1MB (Bit array with 8 million bits)

 Question:

* What is the probability that an email with un-registered address is going
through?

= N F Utrecht University

N

33

Filtering Data Streams (discussion)

* Approximately 1/8 of the bits will be setto 1
e Given a spam email, it will hash to a bit that includes 1 with p = 1/8

* Approximately (1/8 = 0.125) of the spam emails may go through.

* This is called the false positive ratio (FP ratio)

<My

Filtering Data Streams (discussion)

* More accurate estimation using throwing darts
*|S| =M, |B] =N

! and missin =1 !
N g8 Pm = N
1

M M M
* After M trials, p,,, = (1 — N) =(1- %)N(ﬁ) = ((1- IIV)N)(F)

* Probability of hitting p;, =

° (1_ i)N —_ l
N N—-oo e

LIS

* Hencep,, = e V, pp=1—e

e M=1Mand N =8Mthenp, =1 — e %2> =0.1175 (FP ratio)

* How can we reduce the false positive rate?

= N F Utrecht University

N

35

Bloom Filters

 We have:
*|S| =M, |B| =N

* Use k hashing functions H = hq, h, ...

B « zeros
FOR meM DO
FOR h; € H DO

Blh;(m)] « 1

N
§ N % Utrecht University

N

36

Bloom Filters

* Upon receiving an item x from the stream

exists « 1

FOR h; € H DO

if B[h;(x)]==0 DO
exists < 0

Return (exists)

* Declare x isin S if the items hashes to a bit with 1 for every hashing
functionin H

NI
£ U = Utrecht University

N

<My

Bloom Filters

* Using the previous analysis

 We have kM trials towards the N targets

_ kM
* Fractionsof 1sis (1 —e n)

* Hitting k 1s for the k hashing functions with probability p; = (1 —e
* is the probability of a FP

= N F Utrecht University

N

kM
N

)

k

38

Bloom Filters

* When (|S| =M =1Mand |B| =N =8M):
e k=1:(1-e0%121 =0.1175
e k=2:(1-e"925)2 =0.0489

* For this example, optimal case when k = 6: (1 — e 97°)¢ = 0.0216

ck=7:(1—e"7/8)" = 0.0229

N
§ N :é Utrecht University

N

39

N
£¢

iy,
N

Counting Distinct Elements

Utrecht University

40

Counting Distinct Elements

* Problem:
e Data stream consists Of a universe Of eIements

* Maintain a count of the number of distinct elements seen so far

* Obvious approach: Maintain the set of elements seen so far

* That is, keep a hash table of all the distinct elements seen so far

NI
£ U = Utrecht University

N

Example Queries

* How many different words are found among the Web pages being
crawled at a site?

e Unusually low or high numbers could indicate artificial pages (spam?)

* How many different Web pages does each customer request in a
week?

* How many distinct customers accepted to receive promotional
offers during the last month?

NI
£ U = Utrecht University

N

Using Small Storage

* Real problem: What if we do not have space to maintain the set of

elements seen so far?

* Estimate the count in an unbiased way

* Accept that the count may have a little error, but limit the
probability that the error is large

NI
£ U = Utrecht University

N

Flajolet-Martin Approach

 Pick a hash function h that maps each of the N elements to at
least log,(N) bits

* For each stream element q, let r(a) be the number of trailing
Osin h(a)
* r(a) = position of first 1 counting from the right
 E.g.,sayh(a) = 12,then12is1100in binary,sor(a) = 2

* Record R = the maximum 7r(a) seen

* R = max(r(a)), over all the items a seen so far
a

 Estimated number of distinct elements = 2%

NI
£ U = Utrecht University

N

The slides after this point are not
included in the final exam

N
%Té Utrecht University

45

Classification

A

& F Utrecht University
WS

46

Classifying Data Streams

* Offline classification
* train a classifier (model) using labelled examples

* the model is used to predict the label for unlabelled instances

* Best practices
* split the labelled dataset into train/validate/test

* maybe use cross-validation to train accurate model

* Online (streaming) classification

* no clear separation between train/validate/test sets

NI
£ U = Utrecht University

N

Classifying Data Streams

e Restrictions

* process one instance at a time, and inspect it (at most) once

limited time to process each instance

limited memory

be ready to give predictions at any time

adapt to changes (concept drifts)

NI
£ U = Utrecht University

N

Hoeffding Tree (HT)

* With high probability, HT has similar accuracy as classical DT

e Uses small sample — based on Hoeffding bound
* X isarandom variable
* Risthe domain of X
* n is the number of observations
e [is the sample mean (computed using the n observations)

* With prob. 1 — §, the distance from u to ji is at most €, where:

[t

€= 2n

NI
£ U = Utrecht University

N

<My

Hoeffding Tree (HT) Algorithm

Input:
S: sequence of observations
A: set of attributes {Al, A2, .., Am}
G(.): Attribute Selection Measure
0: desired accuracy
Procedure:
FOR each observation in S:
compute G(Ai), 1<i<m
retrieve Ap, Ag (with two highest G value)
1f (G(Ap) - G(Ag) > €):
split on Ap
recurse to next node
break

= § F Utrecht University

N

50

N

G(weather) — G(has a car) > €

Utrecht University

Parent Visitin

no

Cinema

U

Parent Visiting

Data Stream

Play Tennis

Rich/

Shopping

Data Stream

G(money) — G(has a car) > €

HT Strengths and Weaknesses

 Strengths
e Scales better than traditional methods

* Incremental: new examples are added as they come

* Weaknesses
* Could spend a lot of time with ties

* Memory used with tree expansion

e Number of candidate attributes

NI
£ U = Utrecht University

N

Very Fast Decision Tree (VFDT)

* Modifications to Hoeffding Tree
* Near-ties broken more aggressively

G computed every n,,;,, (a user defined parameter)

Deactivates certain leaves to save memory

Poor attributes dropped

Initialize with traditional learner
* Compare to Hoeffding Tree: Better time and memory

* Compare to traditional decision tree

 Similar accuracy

e Better runtime with 1.61 million examples
e 21 minutes for VFDT compared to 24 hours for C4.5

NI
£ U = Utrecht University

N

Clustering

Y

Utrecht University
WS

Clustering Data Streams

* Input: Data stream points from metric space
e Goal: Find k clusters in the stream (based on k-median algorithm)

* Constant factor approximation algorithm
* Two step algorithm:
* Depending on the size of memory, divide the batch of data into [sets
(S,,..., 8, 1>k
» Select one center ¢c; fromeach S;, 1<i <
 Assign each observation in S; to its closest center

* Let C = {c, ..., c;} with each center weighted by number of points
assigned to it

 Cluster C to find k centers (medians)

<

% Y § Utrecht University

AN

<My

CluStream

* Divide the clustering process into online and offline components

* Online component: stores summary statistics about the stream data

* A micro-cluster for n points is defined as a (2.d + 3) tuple
(CF2*,CF1%*,CF2t,CF1t,n)

» Offline component: answers various user questions based on the stored
summary statistics
* Initialization
* Use the first batch from the stream to cluster the data into g micro-cluster

* g is significantly larger than the actual number of clusters

= N F Utrecht University

N

CluStream

* Online incremental update of micro-clusters

* Upon the arrival of a new observation

* Observation is within max-boundary of one micro-cluster, insert into the micro-cluster
* Otherwise, create a new cluster

* May delete obsolete micro-cluster or merge two closest ones

* Query-based macro-clustering (offline)

* Based on a user-specified time-horizon h and the number of macro-clusters
K, compute macro-clusters using the k-medians (or k-means) algorithm

NI
£ U = Utrecht University

N

 We discussed
* The data streams

* Models for handling data
streams

* Example queries over data
streams (filtering, counting
distinct elements)

* Classification and Clustering
of Data streams

Wy,
“—7,(/

Wiy
=v

N

Utrecht Univers

Extra Material for Interested Students

ity

59

Does each sample have the same
probability to be in the reservoir?

N
%Té Utrecht University

60

Sampling from Data Streams — Reservoir Sampling

* Claim: each element is kept in the reservoir with prob. p = s/n
* Proof: We prove that using mathematical induction

* Base case:
* After we see n = s elements, the sample S has the desired property

* Each sample, (out of n = s elements), is in the sample with probability s/s = 1

* Inductive hypothesis:
» After n elements, the sample S contains each element seen so far with

S
prob. -
* Now element n+1 arrives

N
§ N % Utrecht University

N

61

Sampling from Data Streams — Reservoir Sampling

* Inductive step: For elements already in S, probability that the
algorithm keeps itin S is:

S S s—1 n
| —— |+ = —
n+l n+1 S n+1
Element n+1 Element n+1 Element in the
discarded not discarded sample not picked

* So, at time n, tuples in S were there with prob. s/n
* Time n—n + 1, tuple stayed in S with prob.n/(n + 1)

S n S

* So prob. tupleisin S attimen+1 = -+ —= —
n n+l n+1

= N F Utrecht University

Flajolet-Martin Approach for Counting
Distinct Items in Data Streams

N
%Té Utrecht University

63

Why Flajolet-Martin Approach Works?

* Intuition: for a given element a
* h hashes a to any of the M keys with the same probability
* h will have a sequence of |log, M| bits

* 27" is the ratio of the keys that have a tail of 0’s
* Approximately 50% of the keys will hash to ********Q
» Approximately 25% of the keys will hash to ******00
« Example, if a key hashes to *****100, probably 4 keys were hashed (27 keys)

N
§ Y % Utrecht University

N

64

<My

Why Flajolet-Martin Approach Works?

* Formally:

* We use p, to be the probability of finding a tail of r zeros and 7, is the
probability of finding NO tail of r zeros, show:

. —>1 —
Prsor and pr M<«<2" U
* M = |S|is the number of keys — distinct elements from the steam

* Proof:

* h(x) hashed the elements uniformly at random
. pr(h(x)) has a tailof ¥ 0’sis 27"
. ﬁr(h(x)) = 1 — 277 (probability of finding NO tail of 0’s)

= § F Utrecht University

N

65

Y

Why Flajolet-Martin Approach Works?

* After hashing the M keys,
. ﬁr(h(x)) = (1 — 277)M (prob. that h(x) has NO tail of length 1, Vx €
S)
. ﬁr(h(X)) = (1 - Z—r)M =(1- Z—r)zr(Mz—T) Zr_o)oe—Mz—r

* When M <« 2" then ﬁr(h(x)) — 1 and pr(h(x)) -0
» When M > 2" then §,.(h(x)) = 0and p,(h(x)) = 1

= § F Utrecht University

N

66

