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Topics for Today

• Time Series Analysis

• Demand Forecasting
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Reading Material

• Operations Management (4-th Edition) Reid Sanders
• pages 265-294 (forecasting)

• A good replacement would be:
• Forecasting: Principles and Practice (2nd ed)

• Rob J Hyndman and George Athanasopoulos
• Relevant sections that explain the concepts in the slides
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Time Series Analysis
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Time Series

• A Time Series is a set of observations measured at specified, usually 
equal, time intervals

• Adjacent observations are dependent

Oil Price in Ecuador 2013 
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Car Sales Dataset
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Time Series Examples

• Sales data
• Gross national product
• Share prices
• Euro-to-Dollar Exchange rate
• Unemployment rates
• Population
• Interest rates
• Weather readings: temperature, humidity and wind speed
• … 
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Time Series Analysis

• Adjacent observations in a time series are dependent

• Time series analysis attempts to identify the factors that exert 
influence on the values in the series

• Concerned with techniques for the analysis of dependence between the 
observations
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Time Series Analysis

• Areas of application
• Forecasting 

• Industry and government must forecast future activity to make decisions and plans to 
meet projected changes

• Determining the transfer function of a system
• Determining the effect of any given series of inputs on the output of a system

• Using indicator input variables in transfer function
• Assess the effects of unusual intervention events on the behavior of a time series

• Examining the interrelationships among several related time series variables
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Time Series Components

• Can be broken into these four components:
• Trend
• Seasonal variation
• Cyclical variation
• Irregular variation
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Time Series Components
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Time Series Components – Trend 

• This is the long-term growth or decline of the series
• In economic terms, long term may mean >10 years 

• Describes the history of the time series

• Uses past trends to make prediction about the future

• An analysis of the trend of the observations is needed to acquire an 
understanding of the progress of events leading to prevailing 
conditions
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Time Series Components – Trend 

© 2015 by EUROSTAT. All rights reserved. Open to the public
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Remarks: Time Series Components – Trend 

• Trend estimates are often reliable; however, in some instances the 
usefulness of estimates is reduced by:

• high degree of irregularity in original or seasonally adjusted series or

• abrupt change in the time series characteristics of the original data

15



Remarks: Time Series Components – Trend 

Global Financial 
Crisis 2007 - 2008

COVID-19 Crisis
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Time Series Components – Seasonal Variation (Seasonality)

• Seasonal variation of a time series is a pattern of change that recurs
regularly over time.

• Seasonal variations are  usually due to the differences between 
seasons and to festive occasions such as Easter and Christmas.

• Usually changes occur within a year

• Examples include:
• Air conditioner sales in Summer
• Heater sales in Winter
• Flu cases in Winter
• Airline tickets for flights during school vacations
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Time Series Components – Seasonal Variation (Seasonality)

Seasonality in a time series can be identified by regularly spaced peaks and troughs (Kaggle) 
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Time Series Components – Cyclical Variation

• Cyclical variations have recurring patterns but with a longer and more 
erratic time scale compared to Seasonal variations (e.g. 2- 10 years)
• The name is quite misleading 

• these cycles can be far from regular 
• it is usually impossible to predict the length of expansion/contraction periods

• There are no guarantees of a regularly returning pattern. 
• Examples include:

• Floods
• Wars
• Changes in interest rates
• Economic depressions or recessions
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Time Series Components – Cyclical Variation

Average temperature in 
Algeria (10-1997 to 2-1999) 
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Time Series Components – Cyclical Variation

Trough

Peak

Expansion

recessionAverage temperature in 
Algeria (2-1998 to 1-2001) 
smoothed by moving average
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Time Series Components – Irregular Variation

• An irregular (or random) variation in a time series occurs over varying 
(usually short) periods.

• It follows no pattern and is, by nature, unpredictable.

• It usually occurs randomly and may be linked to events that also occur 
randomly.

• Irregular variation cannot be explained mathematically. 
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Time Series Components – Irregular Variation

• If the variation cannot be accounted for by the trend, season or 
cyclical variation, then it is usually attributed to irregular variation. 

Example include:
– Sudden changes in interest rates
– Collapse of companies
– Natural disasters
– Sudden shifts in government policy
– Dramatic changes to the stock market
– Effect of Middle East unrest on petrol prices
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Time Series Decomposition

• Additive decomposition 𝑦! = 𝑆! + 𝑇! + 𝑅! = '𝑆! + (𝑇! + (𝑅!
• 𝑦!: time series values

• 𝑆!: seasonal component

• 𝑇!: trend component

• 𝑅!: the reminder

• Good for situation when the variation in the seasonal fluctuations is almost 
stable

• Multiplicative decomposition 𝑦! = 𝑆!×𝑇!×𝑅! = '𝑆!×(𝑇!× (𝑅!
• Common with economic time series
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Time Series Decomposition – Detrending 

• Estimate a smoothed trend (𝑇! (details will follow)

• Remove the smoothed (𝑇! from 𝑦! to get the '𝑆! and (𝑅!
• In additive decomposition 𝑦! − (𝑇! = '𝑆! + (𝑅!

• In multiplicative decomposition "!#$!
= '𝑆!× (𝑅!

25



Time Series Decomposition – Seasonal Component 

• Compute a seasonal index for each season over the past years 

• Per month { &𝑆 " , … , &𝑆 "# } or quarter { &𝑆 " , … , &𝑆 $ }, …

• If necessary, adjust the indices so that:
• For additive decomposition &𝑆 " +⋯+ &𝑆 % = 0, 𝑚 = number of seasons

• For multiplicative decomposition &𝑆 " +⋯+ &𝑆 % = 𝑚
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Time Series Decomposition – Reminder Component 

• For additive decomposition (𝑅! = 𝑦! − (𝑇! − '𝑆!

• For multiplicative decomposition (𝑅! =
"!
#$! %&!
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from pandas import Series
from matplotlib import pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
%matplotlib inline
series = list(df_oil.dcoilwtico.dropna())
result = seasonal_decompose(series, model='multiplicative', period=100)
result.plot()
plt.savefig("oil_price.pdf", format="pdf", bbox_inches="tight")
plt.show()

You can use 
'additive'
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Time Series Components – Trend
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Measuring the Trend

• An essential aim in time series analysis is using the past information 
to establish plan for the next period.

• Measuring the trend depicts the general direction of the trend line over time

• The trend can be affected by:
• Population changes 
• Productivity improvement
• Technological advancements
• Global crisis
• Market changes
• …
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Why Examine the Trend?

• If the current trend is expected to continue, it can be used for future 
planning:

• Capacity planning for increased population 
• Utility loads
• Market progress 
• Required resource for new students
• Expected workload 

• Emergency calls 
• Taxi demand
• Occupied beds in a hospital
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Depicting the Trend

• Common methods include:
• Semi-average
• Moving average
• Least-square 
• Exponential smoothing
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Depicting the Trend – Semi-Average

• Attempts to fit a straight line to describe the trend:

• Divide the data into 2 equal time ranges
• Calculate the average of the observations in each of the 2-time ranges 
• Draw a straight line between the 2 points
• Extend the line slightly past the end of the original observation to make 

predictions for future years
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Depicting the Trend – Moving-Average

• Based on the premise that if values in a time series are averaged over 
a sufficient period, the effect of short-term variations will be reduced

• The degree of smoothing can be controlled by selecting the number 
of cases to be included in an average.
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Depicting the Trend – Least-Square Linear Regression

• A more sophisticated way for fitting a 
straight line to a time series is using the 
method of least squares regression.

Sound familiar? 

• Observations are the dependant variables (y)
• Time is the independent variable (x).

O
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er
va
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ns

Time
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Depicting the Trend – Least-Square Linear Regression

Given a set of points (𝑥' , 𝑦')
such as the points in the 
scatterplot, find the best fitting 
line 

𝑓 𝑥' = 𝑎 + 𝑏𝑥'
such that: 

𝑆𝑆𝐸 =3
'

𝑦' − 𝑓 𝑥'
(

=3
'

𝑦' − 𝑎 − 𝑏𝑥' (

is minimized
36

• 𝑎, 𝑏 are the coefficients of the 
regression model
• Usually, 𝑎 is called the intercept and 𝑏 is 

called the coefficient



Depicting the Trend – Least-Square Linear Regression

• The above optimization problem can be solved by:
1. Taking the partial derivatives of 𝑆𝑆𝐸 with respect to 𝑎 and 𝑏

2. Setting &''(
&)

and &''(
&*

to 0

3. Solving the system of linear equations
Since: 𝑆𝑆𝐸 = ∑+ 𝑦+ − 𝑎 − 𝑏𝑥+ #

Then &''(
&)

= −2∑+ 𝑦+ − 𝑎 − 𝑏𝑥+ = 0

And  &''(
&*

= −2∑+ 𝑥+ 𝑦+ − 𝑎 − 𝑏𝑥+ = 0
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Depicting the Trend – Least-Square Linear Regression

• The equations can be summarized by the normal equation:

𝑁 7
+

𝑥+

7
+

𝑥+ 7
+

𝑥+#
𝑎
𝑏 =

7
+

𝑦+

7
+

𝑥+𝑦+
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Depicting the Trend – Least-Square Linear Regression

• Practically:
• Determine the number of samples (𝑛)
• Allocate midpoint in time and replace the time points by their corresponding 
𝑥 values by increasing and decreasing one unit from the midpoint accordingly. 

• The dependent variable is “𝑦”
• Compute Σ𝑥+# and Σ𝑥+𝑦+

• Σ𝑥! should be 0.

• Find 𝑦 = 𝑎 + 𝑏𝑥 where 𝑏 = ∑ -!.!
/-!

" and 𝑎 = ∑ .!
0

(refer to the previous 
slide and keep in mind that Σ𝑥+ = 0)
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Example

• Consider the following dataset

𝑛 = 9 7
+

𝑥+ = 0 7
+

𝑥+# = 60

7
+

𝑦+ = 165 7
+

𝑥+𝑦+ = 62

𝒀𝒆𝒂𝒓 2003 2004 2005 2006 2007 2008 2009 2010 2011
𝒙 -4 -3 -2 -1 0 1 2 3 4
𝒚 13 15 17 18 19 20 20 21 22

By definition,  ∑" 𝑥" = 0
40



Example

• Consider the following dataset

𝑎 =
∑𝑦+
𝑛

=
165
9

= 18.3

𝑏 =
∑𝑥+𝑦+
Σ𝑥+#

=
62
60

= 1.03

𝒀𝒆𝒂𝒓 2003 2004 2005 2006 2007 2008 2009 2010 2011
𝒙 -4 -3 -2 -1 0 1 2 3 4
𝒚 13 15 17 18 19 20 20 21 22

Exercise: Predict the sales for year 2014. 
41



Depicting the Trend – Exponential Smoothing

• History is used to flatten out short term fluctuations
𝑆+ = 𝛼𝑦 + 1 − 𝛼 𝑆+,-

• 𝑆𝑥 = the smoothed value for observation 𝑥

• 𝑦 = the actual value of observation at time 𝑥

• 𝑆+,- = the smoothed value previously calculated for observation at 
time (𝑥 − 1)

• a = the smoothing constant where 0 £ a £ 1

42



Depicting the Trend – Exponential Smoothing

• a = the smoothing constant where 0 £ a £ 1

• 𝛼 is small ⟹ more weight for the past measurements

• 𝛼 is large ⟹ more weight for the present trend

• This approach needs a starting point
• we choose the first smoothed value (𝑆") to be the first observation (𝑦")

• The smoothed value of each observation is a function of the 
smoothed value of the observation immediately before it
• Suffers from propagation error
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Seasonal Variation
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Seasonal Variations

• Periodic movements in the time series 

• It is important to consider seasonal variations for future planning

• A seasonally adjusted series involves estimating and removing the 
cyclical and seasonal effects from the original data

• For example: 
• employment and unemployment are often seasonally adjusted so that the 

actual change in employment and unemployment levels can be seen, without 
the impact of periods of peak employment such as Christmas/New Year when 
a large number of casual workers are temporarily employed 
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Seasonal Variations – Example 

• Adverse publicity in December about ice-cream

• It would be incorrect simply to compare the sales of ice-cream in June 
with those in December to determine the effect of the adverse 
publicity. Sales rate in June is higher in any case, because it is warmer

• Useful comparisons of sales could only be made after removing the 
seasonal variation so the true impact of the publicity would be more 
realistic 
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Compute the Seasonal Index

• To remove the seasonal effect before finding the trend in the data

• Simple average method 
• Take the average for each period (period mean) over at least three years

• Express that as an index by comparing it to the average of all periods over the 
same period of time

• Note: indices can be based on periods such as months or weeks
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Compute the Seasonal Index – Example 

• Consider the data
Year Quarter

1 2 3 4

1994 43 64 63 41

1995 46 64 67 43

1996 51 69 75 39

1997 55 73 79 48

Quarterly total 195 270 284 171

Quarterly mean 48.75 67.5 71 42.75

Yearly average 1994 = (43 + 64 + 63 + 41)/4 = 211/4 = 52.75

Yearly average 1995 = (46 + 64 + 67 + 43 )/4 = 220 /4 = 55.0

Yearly average 1996 = (51 + 69 + 75 + 39 )/4 = 234/4 = 58.5

Yearly average 1997 = (55 + 73 + 79 + 48 )/4 = 255 / 4 =63.75
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Compute the Seasonal Index – Example 

• Compute the yearly average of the values and divide the quarterly 
reading over the yearly average 

Year Quarter

1 2 3 4

1994 43/52.75 64/52.75 63/52.75 41/52.75

1995 46/55 64/55 67/55 43/55

1996 51/58.5 69/58.5 75/58.5 39/58.5

1997 55/63.75 73/63.75 79/63.75 48/63.75

Yearly average 1994 = (43 + 64 + 63 + 41)/4 = 211/4 = 52.75

Yearly average 1995 = (46 + 64 + 67 + 43 )/4 = 220 /4 = 55.0

Yearly average 1996 = (51 + 69 + 75 + 39 )/4 = 234/4 = 58.5

Yearly average 1997 = (55 + 73 + 79 + 48 )/4 = 255 / 4 =63.75
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Compute the Seasonal Index – Example 

• Compute the index as the quarterly average over the years

Year Quarter

1 2 3 4

1994 0.82 1.21 1.19 0.78
1995 0.84 1.16 1.22 0.78
1996 0.87 1.18 1.28 0.67
1997 0.86 1.15 1.24 0.75

Year Seasonal index (Quarterly) 

1 2 3 4

1994 82 121 119 78
1995 84 116 122 78
1996 87 118 128 67
1997 86 115 124 75

Seasonal Index 
(Over the years) 84.8 117.5 123.3 74.5

• Divide the Quarterly value over the yearly average
• Summation of the values in each row is 4

Multiply by 100

50

• Summation of the values in each row is 400



Compute the Seasonal Index – Example 

• Remove the seasonal effect from the data (multiplicative model)

Year Quarter Actual Value Seasonal Index Adjusted Values

1996 1 51 84.8 60
2 69 117.5 59
3 75 123.3 61
4 39 74.5 52

1997 1 55 84.8 65
2 73 117.4 62
3 79 123.3 64
4 48 74.5 64

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑙𝑦 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐼𝑛𝑑𝑒𝑥

×100
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Compute the Seasonal Index – Example 

• Alternate approach to calculate Seasonal Index number for each quarter
• Take the quarterly mean over the years

• Divide each mean value by the mean of means multiplied by 100 

Quarter Quarterly mean Seasonal Index

1 48.75 48.75/57.5*100 = 84.78
2 67.5 67.5/57.5*100 = 117.39
3 71 71/57.5*100 = 123.478
4 42.75 42.75/57.5*100 = 74.348

Means Total 230 400
Mean of Means 57.5 100
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Compute the Seasonal Index – Example 

• Remove the seasonal effect from the data

Year Quarter Actual Value Seasonal Index Adjusted Values

1996 1 51 84.8 60
2 69 117.4 59
3 75 123.5 61
4 39 74.3 52

1997 1 55 84.8 65
2 73 117.4 62
3 79 123.5 64
4 48 74.3 65

𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑙𝑦 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠
𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐼𝑛𝑑𝑒𝑥

×100
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Time Series Decomposition – Summary

• Additive decomposition 𝑦! = 𝑆! + 𝑇! + 𝑅! = '𝑆! + (𝑇! + (𝑅!
• Multiplicative decomposition 𝑦! = 𝑆!×𝑇!×𝑅! = '𝑆!×(𝑇!× (𝑅!
• Detrended data

• In additive decomposition 𝑦! − I𝑇! = &𝑆! + I𝑅!
• In multiplicative decomposition .#FG#

= &𝑆!× I𝑅!

• Detrending and removing the seasonal effect
• For additive decomposition I𝑅! = 𝑦! − I𝑇! − &𝑆!
• For multiplicative decomposition I𝑅! =

.#
FG# H'#
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STL Decomposition

• Seasonal and Trend decomposition using Loess
• Handle any type of seasonality 

• Seasonal component is allowed to change over time

• Smoothness of the trend can be controlled by the user

• Can be robust to outliers

from statsmodels.tsa.seasonal import STL
df_oil_new = df_oil.dropna()
dcoilwtico = list(df_oil_new.dcoilwtico)
oil_data = pd.Series(
dcoilwtico, index=df_oil_new.date, name="OIL")
stl = STL(oil_data, period = 100)
res = stl.fit()
fig = res.plot()
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Demand Forecasting
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Decisions that Require Forecasting

• What products to produce?

• How many people to hire?

• How many units to purchase?

• How many units to produce?

• How many items to order?

• And so on……
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Common Characteristics of Forecasting

• Forecasts are rarely perfect

• Forecasts are more accurate for aggregated data than for individual 
items

• Forecast are more accurate for shorter than longer time periods
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Why Forecasting is Important?
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Forecasting Techniques

• Naïve Forecasting

• Simple Mean

• Moving Average

• Weighted Moving Average

• Exponential Smoothing
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Forecasting – Example

• Determine forecast for periods 11
• Naïve forecast

• Simple average

• 3- and 5-period moving average

• 3-period weighted moving average with 
weights 0.5, 0.3, and 0.2

• Exponential smoothing with alpha=0.2 
and 0.5

Period Orders
1 122
2 91
3 100
4 77
5 115
6 58
7 75
8 128
9 111

10 88
61



Naïve Forecasting

• Next period’s forecast = previous 
period’s actual

K𝑦!I" = 𝑦!
K𝑦! represents the predicted value at 
time 𝑡

𝑦 represents the actual value at time 𝑡

Period Orders Naïve 
Forecast

1 122
2 91 122
3 100 91
4 77 100
5 115 77
6 58 115
7 75 58
8 128 75
9 111 128

10 88 111
11 88 62



Simple Average

• Next period’s forecast = average of 
previously overserved data

K𝑦!I" =
𝑦" + 𝑦# +⋯+ 𝑦!

𝑡

Period Orders Simple 
Average

1 122
2 91 122
3 100 107
4 77 104
5 115 98
6 58 101
7 75 94
8 128 91
9 111 96

10 88 97
11 97 63



Moving Average

• Next period’s forecast = simple 
average of the last 𝑘 periods 

8𝑦!.- =
𝑦!,/.- + 𝑦!,/.( + ⋯+ 𝑦!

𝑘
• Also called Rolling Window

• A smaller 𝑘 makes the forecast 
more responsive

• A larger 𝑘 makes the forecast more 
stable

Period Orders Moving 
Average (k = 3)

Moving 
Average (k = 5)

1 122

2 91

3 100

4 77 104
5 115 89
6 58 97 101
7 75 83 88
8 128 83 85
9 111 87 91

10 88 105 97
11 109 92
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Weighted Moving Average

• Next period’s forecast = weighted 
average of the last 𝑘 periods 
8𝑦!.- = 𝑐-𝑦!,/.- + ⋯+ 𝑐/𝑦!

With 
𝑐- + 𝑐( + ⋯+ 𝑐/ = 1

We take 𝑐- = 0.2, 𝑐( = 0.3 and 
𝑐0 = 0.5

Period Orders Weighted Moving 
Average (k = 3)

1 122

2 91

3 100

4 77 102
5 115 87
6 58 101
7 75 79
8 128 78
9 111 98

10 88 109
11 103 65



Exponential Smoothing

• Next period’s forecast = weighted 
average of the previous reading 
and the history

8𝑦!.- = 𝛼 𝑦! + (1 − 𝛼) 8𝑦!
8𝑦0 = 0.2 ∗ 91 + 0.8 ∗ 122 = 116

• A smaller 𝛼 makes the forecast 
more stable

• A larger 𝛼 makes the forecast 
more responsive

Period Orders Exponential 
Smoothing(𝜶 =

𝟎. 𝟐)

Exponential 
Smoothing(𝜶 =

𝟎. 𝟓)
1 122

2 91

3 100 116 107
4 77 113 104
5 115 106 91
6 58 108 103
7 75 98 81
8 128 93 78
9 111 100 103

10 88 102 107
11 99 98 66



Forecast Accuracy

• Tests of forecast accuracy are based on the difference between the 
forecast of the variables’ values at time t and the actual value at the 
same time point t

• The closer the two to each other ⟹ the smaller the forecast error, 
i.e. better forecast
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Forecast Accuracy – Mean Squared Error (MSE)

• The MSE statistic is defined as:

𝑀𝑆𝐸 =
∑!7$#
$ 𝑦! − 8𝑦! (

𝑇 − 𝑇- + 1

• 𝑇 is the total number of samples in the time series

• 𝑇- the index of the first value to be forecast

• 8𝑦! is the predicted value at time t

• 𝑦! is the actual value at time t

• Another popular measure: Root Mean Squared Error (RMSE) = 𝑀𝑆𝐸
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Forecast Accuracy – More Measures

• The Mean Absolute Error (MAE) :

𝑀𝐴𝐸 =
∑!7$#
$ 𝑦! − 8𝑦!
𝑇 − 𝑇- + 1

• It is also known as Mean Absolute Deviation (MAD)

• Tracking Signal (TS)

𝑇𝑆 =
∑!7$#
$ 𝑦! − 8𝑦!

𝑀𝐴𝐸
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• Summarize what you 
learned today in 2-minutes
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