Data Wrangling and Data Analysis Text mining #1

DL Oberski

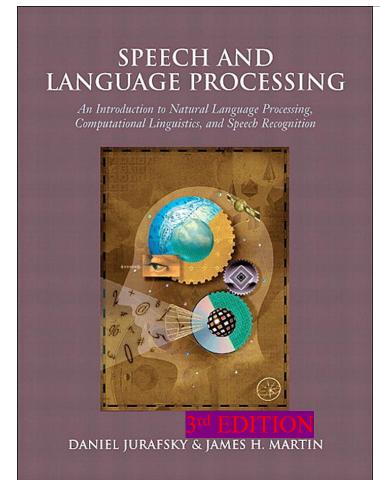
Department of Methodology & Statistics
Utrecht University

This week

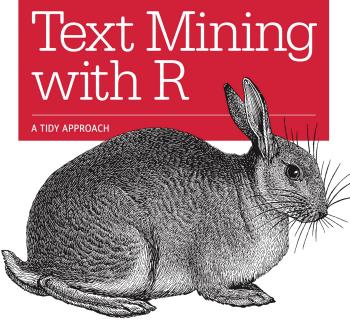
- Day 1: Clustering #2: Model-based clustering
- Day 2: Text mining #1
- Day 3: Text mining #2

Readings about text mining

- Jurafsky & Martin (2021).
 Speech and language processing (3rd ed draft) https://web.stanford.edu/~jurafsky/slp3/
 - Sections
 - 2.1, 2.4, (regular expressions)
 - 6.2, 6.3, 6.4, 6.5, 6.8
- Silge & Robinson (2021). Text mining with R: A tidy approach. https://www.tidytextmining.com/
 - Chapter 3
- More accessible (?) intro to regular expressions:
 - R4 data science ch. 14
 - https://r4ds.had.co.nz/strings.htm l#matching-patterns-with-regularexpressions



O'REILLY®



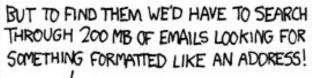
Why learn text mining

Text data is everywhere:

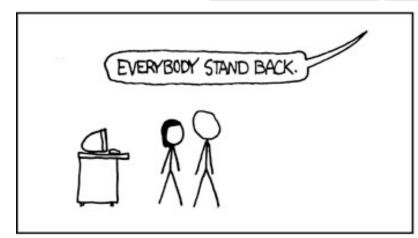
- websites (e.g., news), social media (e.g., twitter), databases (e.g., doctors' notes), digital scans of printed materials, ...
- Applications in industry: search, machine translation, sentiment analysis, question answering, ...
- Applications in science: cognitive modelling, understanding bias in language, automated systematic literature reviews, ...

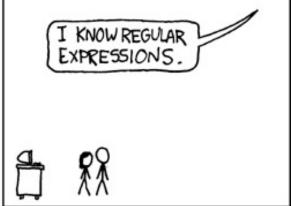
Regular expressions

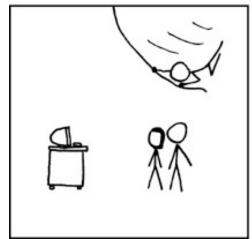
WHENEVER I LEARN A
NEW SKILL I CONCOCT
ELABORATE FANTASY
SCENARIOS WHERE IT
LETS ME SAVE THE DAY.



IT'S HOPELESS!







http://xkcd.com/208/

Regular expressions (regex)

- Powerful and very very useful tool for text (pre)processing
- Used in pretty much every pipeline involving text
- Typical applications:
 - Extracting numbers, emails, IP-addresses, etc.
 - Validating text inputs in GUIs
 - Reformatting annoying incorrect dates (everything not yyyy-mm-dd)
 - Scrubbing names and addresses for pseudonimization
- Powerful: e.g. J&M implement (part of) ELIZA (see link) in regex!
- Cryptic & takes a lot of practice!

Basic matching using stringr

```
x <- c("apple", "banana", "pear")
str_view(x, "an")</pre>
```

apple

banana

pear

Basic matching

matches any character

```
str_view(x, ".a.")
```

apple

banana

pear

Anchors

By default, regular expressions will match any part of a string. It's often useful to **anchor** the regular expression so that it matches from the start or end of the string. You can use:

- ^ to match the start of the string.
- \$ to match the end of the string.

```
x <- c("apple", "banana", "pear")
str_view(x, "^a")</pre>
```

apple

banana

pear

Game

- Match the word "monarch"
- Match all 8-letter words

Barbados is moving from a parliamentary constitutional monarchy under the hereditary monarch of Barbados (currently Queen Elizabeth II) to a parliamentary republic with a ceremonial elected president as head of state.

Examples

```
Regex
hello
gray|grey
gr(a|e)y
gr[ae]y
b[aeiou]bble
[b-chm-pP]at|ot
```

colou?r

Matches any string that

contains {hello}

contains {gray, grey}

contains {gray, grey}

contains {gray, grey}

contains {babble, bebble, bibble, bobble, bubble}

contains {bat, cat, hat, mat, nat, oat, pat, Pat, ot}

contains {color, colour}

More complicated examples

Regex

\d 1\d{10} \d+(\.\d\d)?

^dog
dog\$
^dog\$

Matches any string that

contains {0,1,2,3,4,5,6,7,8,9}

contains an 11-digit string starting with a 1

contains a positive integer or a floating point number with

exactly two characters after the decimal point.

begins with "dog"

ends with "dog"

is exactly "dog"

Matching and Extracting Data

- The function str_detect() returns a True/False depending on whether the string matches the regular expression
- If we actually want the matching strings to be extracted, we use str_extract()

```
[0-9]+

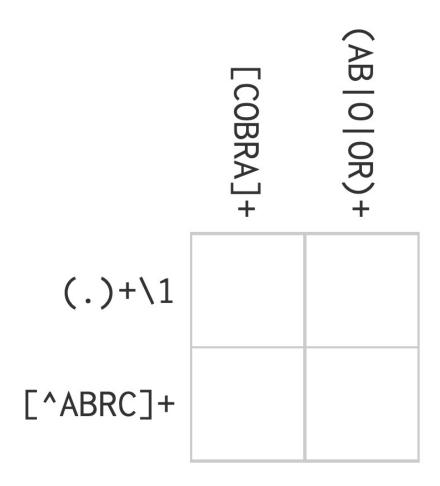
One or more digits
```

```
> library(stringr)
> s = 'My 2 favorite numbers are 19 and 42'
> str_extract_all(s, '[0-9]+')
[[1]]
[1] "2" "19" "42"
```

Regular expression conclusion

- You have now heard of regular expressions
- And might have a basic idea of what you might do with them
- The only way to really learn, however, is practice
- Read the set texts (J&M ch 2 and/or R4DS ch 14)
- Next time you encounter some text you need to work on think "can I do this using regular expressions?"
- The answer is probably "yes".

Challenge problem: regex crossword



Why text mining

- Text data is everywhere websites (e.g., news), social media (e.g., twitter), databases (e.g., doctors' notes), digital scans of printed materials, ...
- · A lot of world's data is in **unstructured** text format
- Applications in industry: search, machine translation, sentiment analysis, question answering, ...
- · Applications in science: cognitive modeling, understanding bias in language, automated systematic literature reviews, ...

Basic idea of text mining

- Text is "unstructured data"
- How do we get to something structured that we can compute with?
- $\cdot \rightarrow$ text has to be **represented** somehow

Basic plan:

- 1. Represent the text as something that makes sense to a computer;
- 2. Continue life as normal.

Step 2 might involve prediction ("text classification", "sentiment analysis"), visualization (e.g. word clouds), etc.

Example representations: "time series"

"And the evening and the morning were the third day."

Token time series:

- Label each token 1-8 (including ".")
- $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 8$

Part-of-speech time series:

· CON \rightarrow DET \rightarrow NOUN \rightarrow CON \rightarrow DET \rightarrow NOUN \rightarrow VERB \rightarrow DET \rightarrow ADJ \rightarrow NOUN

Etc.

Can do statistics as on any categorical time series data.

Example representations: bag-of-words

"And the evening and the morning were the third day."

Word count:

```
## s_tok
## . and day evening morning the third were
## 1 2 1 1 1 3 1 1
```

Word proportions:

```
## s_tok
## . and day evening morning the third were
## 0.0909 0.1818 0.0909 0.0909 0.0909 0.2727 0.0909 0.0909
```

Etc.

Can do statistics as on any rectangular data set

Text representations

- · Other examples: tf-idf, topic models, embeddings, transformers
- From very simple (word count) to very complex (encoder-decoder neural networks)
- · (One of) the main foci of current research in natural language processing
- · Can usually get quite far with very simple!

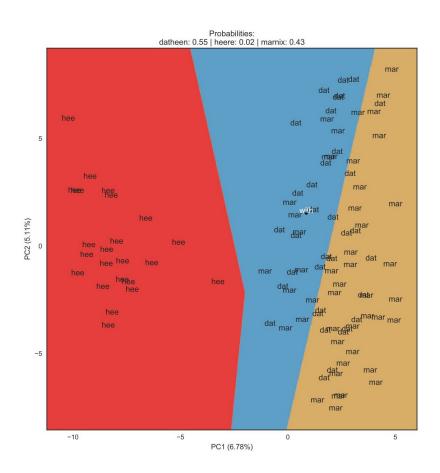
Language is hard

- Different things can mean more or less the same ("data science" vs. "statistics")
- Context dependency ("You have very nice shoes");
- Same words with different meanings ("to sanction");
- Lexical ambiguity ("we saw her duck")
- Irony, sarcasm ("You should swallow disinfectant"?)
- Figurative language ("He has a heart of stone")
- · Negation ("not good" vs. "good"), spelling variations, jargon, abbreviations
- All the above is different over languages, 99% of work is on English!

Language is hard

- We won't solve linguistics today...
- In spite of the problems, text mining can be quite effective!

Who wrote the Wilhelmus?



https://dh2017.adho.org/abstracts/079/079.pdf

Which ICD-10 codes should I give this doctor's note?

Bovengenoemde patiënt was opgenomen op op de voor het specialisme Cardiologie.

Cardiovasculaire risicofactoren: Roken(-) Diabetes(-) Hypertensie(?) Hypercholesterolemie (?)

Anamnese. Om 18.30 pijn op de borst met uitstraling naar de linkerarm, zweten, misselijk. Ambulance gebeld en bij aansluiten monitor beeld van acuut onderwandinfarct. AMBU overdracht:.500mg aspegic iv, ticagrelor 180mg oraal, heparine, zofran eenmalig, 3x NTG spray. HD stabiel gebleven. . .Medicatie bij presentatie.Geen..

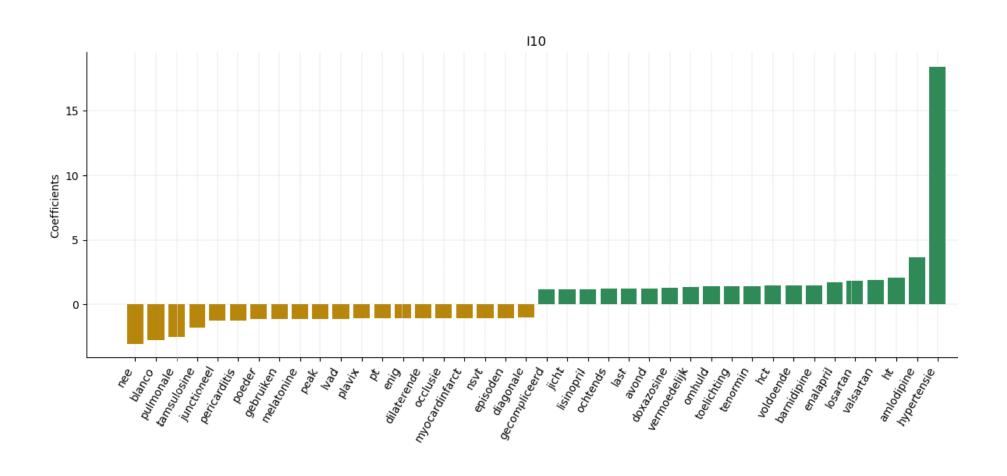
Lichamelijk onderzoek. Grauw, vegetatief, Halsvenen niet gestuwd. Cor s1 s2 geen souffles.Pulm schoon. Extr warm en slank.

Aanvullend onderzoek. AMBU ECG: Sinusritme, STEMI inferior III)II C/vermoedelijk RCA. Coronair angiografie. (...) .Conclusie angio: 1-vatslijden..PCI

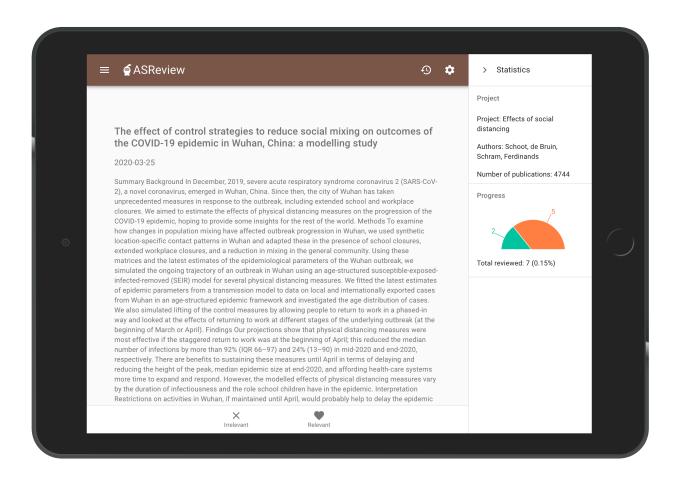
Conclusie en beleid Bovengenoemde jarige man, blanco cardiale voorgeschiedenis, werd gepresenteerd vanwege een STEMI inferior waarvoor een spoed PCI werd verricht van de mid-RCA. Er bestaan geen relevante nevenletsels. Hij kon na de procedure worden overgeplaatst naar de CCU van het . ..Dank voor de snelle overname. ..Medicatie bij overplaatsing. Acetylsalicylzuur dispertablet 80mg; oraal; 1 x per dag 80 milligram; .Ticagrelor tablet 90mg; oraal; 2 x per dag 90 milligram; .Metoprolol tablet 50mg; oraal; 2 x per dag 25 milligram; .Atorvastatine tablet 40mg (als ca-zout-3-water); oraal; 1 x per dag 40 milligram;

Samenvatting Hoofddiagnose: STEMI inferior wv PCI RCA. Geen nevenletsels. Nevendiagnoses: geen. Complicaties: geen Ontslag naar: CCU.

Which ICD-10 codes should I give this doctor's note?



Which studies go in in my systematic review?



https://asreview.nl/

Main points for today

- 1. Workflow of text mining
- 2. Pre-processing text data
- 3. Word and document frequency
- 4. Sentiment analyisis
- 5. conclusion

Some useful definitions

- Document: a sequence of words and punctuation, following the grammatical rules of a language
- Term: usually a word, but can be a word-pair or phrase
- Corpus: a collection of documents
- Lexicon: set of all unique words in a corpus

Basic workflow for text analysis

- 1. Get some text
- 2. Organize text into 'corpus'
- 3. Pre-process: e.g., remove punctuation, stopwords, lowercase
- 4. Create representation \rightarrow actual dataset
- 5. Perform analysis as usual

Step 1. Get some text

Typical sources:

- Existing corpora, e.g. newspapers, libraries, etc. examples: https://www.clarin.eu/portal, https://new.linguistlist.org/studentportal/
- Web scraping

```
library('rvest')
webpage <- read_html('https://en.wikipedia.org/wiki/COVID-19_pandemic')</pre>
```

Social media APIs (e.g. https://rtweet.info/)

•

Step 2. Organize text into 'corpus'

Text corpus: typically stores the text as a **raw character string with metadata** and details stored with the text

Example: 50 Years of Pop Music Lyrics (Kaylin Walker)

Step 2. Organize text into 'corpus'

Text corpus: typically stores the text as a **raw character string** with metadata and details stored with the text

Example: 50 Years of Pop Music Lyrics (Kaylin Walker)

[1] "is this the real life is this just fantasy caught in a landslide no escape from reality open your eyes look up to the skies and see im just a poor boy i need no sympathy because im easy come easy go a little high little low anyway the wind blows doesnt really matter to me to memama just killed a man put a gun against his head pulled my trigger now hes dead mama life had just begun but now ive gone and thrown it all away mama

Step 3. Preprocessing

"And the evning and the morning were the third day."

Typical steps:

- Stemming ("running" \rightarrow "run") or Lemmatization ("were" \rightarrow "is")
- Lowercasing ("And"→"and")
- Stopword removal ("evning morning is third day.")
- Punctuation removal ("evning morning is third day")
- Number removal ("day 3"→"day")
- Spell correction ("evning"→"evening")
- Tokenization ("evening", "morning", "is", "third", "day")

Not all of these are appropriate at all times!

Stemming

- Unifies variations in the text data:
 - e.g., 'walking', 'walks', 'walked' \rightarrow walk
- Inflectional stemming:
 - Remove plurals
 - Normalize verb tenses
 - Remove other affixes
- Stemming to root:
 - Reduce word to most basic element
 - More aggressive than inflictional
 - e.g., 'denormalization' \rightarrow norm;
 - e.g., 'Apply', 'applications', 'reapplied' \rightarrow apply

Tokenization with tidytext

function unnest_tokens() \rightarrow one-term-per-row (automatically removes punctuation)

```
## # A tibble: 566 x 6
       Rank Song
                                                           Year Source token
##
                        Artist
      <dbl> <chr>>
                        <chr>>
                                                           <dbl> <dbl> <chr>
##
    1
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 this
##
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 hit
##
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 that
##
##
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 ice
                                                                      1 cold
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
##
    5
##
    6
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 michelle
    7
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 pfeiffer
##
    8
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 that
##
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 white
    9
##
## 10
          1 uptown funk mark ronson featuring bruno mars
                                                           2015
                                                                      1 gold
## # ... with 556 more rows
```

Removal of stop words - song lyrics

In tidytext: anti_join(stop_words) on unnest_tokens() object.

Still including stop words:

With stopwords removed

```
## # A tibble: 42,157 x 2
                                            ## # A tibble: 41,561 x 2
##
     token
                                                 token
           n
                                            ##
                                                        n
     <chr> <int>
                                                 <chr> <int>
                                               1 love 15283
   1 you
          64606
  2 i
          56472
                                               2 im
                                                       14279
                                               3 dont 11587
##
   3 the 53451
                                            ##
          35752
                                               4 baby
## 4 to
                                                       9098
          32555
                                                5 youre 6592
## 5 and
                                            ##
## 6 me
          31170
                                               6 yeah
                                                       6259
                                            ## 7 time 5176
          29282
## 7 a
                                            ## 8 girl 4803
  8 it
          25688
## 9 my
          22821
                                               9 wanna 4767
          18553
## 10 in
                                            ## 10 gonna 4550
## # ... with 42,147 more rows
                                            ## # ... with 41,551 more rows
```

Also note the removed punctuation by unnest_tokens.

Step 4. Create representation \rightarrow actual dataset

Bag of words

- · d1: "And God said, Let there be light: and there was light."
- · d2: "And God saw the light, that it was good: and God divided the light from the darkness."
- · d3: "And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day."

"Document - Term matrix" (DTM)

	light	god	darkness	called	day	let	said	divided	good	saw	evening	first	morning	night
d1	2	1	0	0	0	1	1	0	0	0	0	0	0	0
d2	2	2	1	0	0	0	0	1	1	1	0	0	0	0
d3	1	1	1	2	2	0	0	0	0	0	1	1	1	1

DTM in R

```
lyricsCorpus <- Corpus(VectorSource(song lyrics$Lyrics))</pre>
lyricsDTM <- DocumentTermMatrix(lyricsCorpus)</pre>
## <<DocumentTermMatrix (documents: 5100, terms: 41762)>>
## Non-/sparse entries: 473454/212512746
## Sparsity
                    : 100%
## Maximal term length: 46
## Weighting : term frequency (tf)
## Sample
##
        Terms
         all and dont know like love that the you your
## Docs
    2993
          5 44
                  2
                       0
                                       44
##
                                     6
                                            5
                                                 1
    3319 6 18
##
                  18
                                    20 44 30
    3378 0 52
                          7
##
                                     5 48
                                           44
                                                4
##
    3551 13 26 5 4
                           12
                                     2 38
                                           30
                                                11
    3762 4 24
##
                  31
                       0
                          6
                                     7 31
                                           16
                                                7
##
    3840
          7 24
                 3
                       2
                           8
                                2
                                     4 39
                                           22
                                                1
##
    3959
         20 27
                  10
                      15
                           11
                                    7 54
                                           16
                                                 3
##
    4249 6 29
                  17
                     7
                           14
                                    12 32 23
                                                12
    4488 10 22
                           11
                                     6 48
##
                6
                                           14
    4571 10
                                     6 48 14
##
                           11
```

Summarizing tokens per document

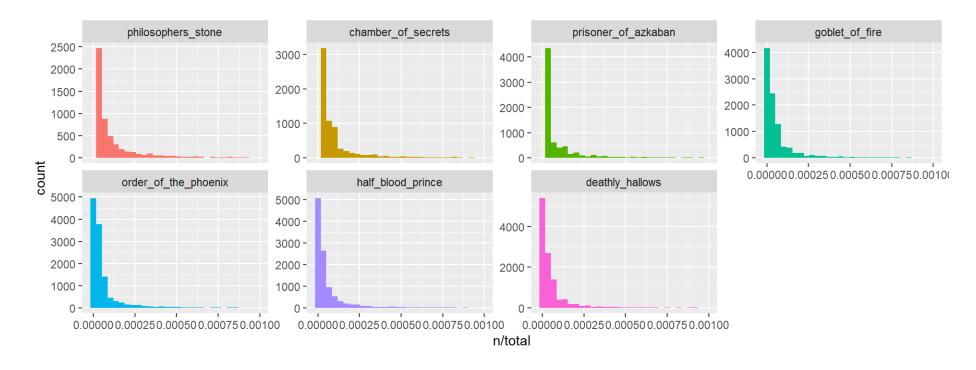
- Bag of words model:
 - Ignores word order
 - Document-term matrix (dtm): One-document-per-row and one-term-percolumn
 - Cells can contain counts, proportions, or (more common) scaled proportions (tf-idf)
- The tidy text format and the dtm can be converted to and from one another:
 - tidy() turns a document-term matrix into a tidy data frame
 - cast() turns a tidy one-term-per-row data frame into a matrix

- Option: quantify how frequently a word occurs in a document (tf), and inspect most frequent words within a document
- However, many words that appear often do not seem very informative, even after removing stop words
- For example, words in the different books of the Harry Potter series:

```
## Warning in NextMethod(): number of items to replace
## replacement length
## # A tibble: 63,651 x 4
      book
                                        n total
                           word
      <fct>
                           <chr>
                                    <int> <int>
##
    1 order of the phoenix harry
                                     3730 96777
##
    2 goblet of fire
                           harry
                                     2936 72663
    3 deathly hallows
##
                           harry
                                     2770 73406
    4 half blood prince
                           harry
                                     2581 63098
    5 prisoner of azkaban
                           harry
                                     1824 41188
##
    6 chamber of secrets
                           harry
                                     1503 33621
##
   7 order_of_the_phoenix hermione
                                     1220 96777
   8 philosophers stone
                           harry
                                     1213 28585
   9 order of the phoenix ron
                                     1189 96777
## 10 deathly hallows
                           hermione
                                     1077 73406
## # ... with 63,641 more rows
```

Word frequency: Zipf's law

Most words occur rarely and only very few words occur frequently.



"Zipf's law": $tf(rank) \propto \frac{1}{rank^c}$ [https://en.wikipedia.org/wiki/Zipf%27s_law]

"Term frequency-inverse document frequency" (tf-idf)

- IDEA 1: Add unimportant frequent words to the list of stop words, but some of these words might be more important in some documents than others
- IDEA 2: decrease the weight for commonly used words and increases the weight for words that are not used very much in a collection of documents
- IDEA 2 is called the inverse document frequency (idf):

$$\mathrm{idf}(\mathrm{term}) = \ln(rac{n_{\mathrm{documents}}}{n_{\mathrm{documents containing term}}})$$

· When idf is combined with tf, we get the tf-idf, which is intended as importance of a word to a document in a corpus

tf "Document - Term matrix" (DTM)

Bag of words

- · d1: "And God said, Let there be light: and there was light."
- · d2: "And God saw the light, that it was good: and God divided the light from the darkness."
- · d3: "And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day."

"Document - Term matrix" (DTM) (raw word counts)

	light	god	darkness	called	day	let	said	divided	good	saw	evening	first	morning	night
d1	2	1	0	0	0	1	1	0	0	0	0	0	0	0
d2	2	2	1	0	0	0	0	1	1	1	0	0	0	0
d3	1	1	1	2	2	0	0	0	0	0	1	1	1	1

tf-idf "Document - Term matrix" (DTM)

Bag of words

- · d1: "And God said, Let there be light: and there was light."
- · d2: "And God saw the light, that it was good: and God divided the light from the darkness."
- · d3: "And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day."

"Document - Term matrix" (DTM) (tf-idf)

	light	god	darkness	called	day	let	said	divided	good	saw	evening	first	morning	night
d1	0	0	0.000	0.0	0.0	1.1	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
d2	0	0	0.405	0.0	0.0	0.0	0.0	1.1	1.1	1.1	0.0	0.0	0.0	0.0
d3	0	0	0.405	2.2	2.2	0.0	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1

tf-idf in R

```
hp words count <- hp words count %>% bind tf idf(word, book, n)
## # A tibble: 63,651 x 6
                                                   idf tf idf
##
     book
                                              tf
                           word
                                        n
                                    <int> <dbl> <dbl> <dbl>
      <fct>
                           <chr>
##
    1 order of the phoenix harry
                                     3730 0.0385
                                                            0
    2 goblet of fire
                           harry
                                     2936 0.0404
##
                                                            0
   3 deathly hallows
                          harry
##
                                     2770 0.0377
                                                            0
   4 half blood prince
                           harry
                                     2581 0.0409
                                                            0
   5 prisoner of azkaban harry
                                     1824 0.0443
                                                            0
    6 chamber of secrets
                           harry
                                     1503 0.0447
                                                            0
   7 order of the phoenix hermione 1220 0.0126
                                                            0
   8 philosophers stone
                           harry
                                     1213 0.0424
                                                            0
   9 order of the phoenix ron
                                     1189 0.0123
                                                     0
                                                            0
## 10 deathly hallows
                           hermione 1077 0.0147
                                                     0
                                                            0
## # ... with 63,641 more rows
```

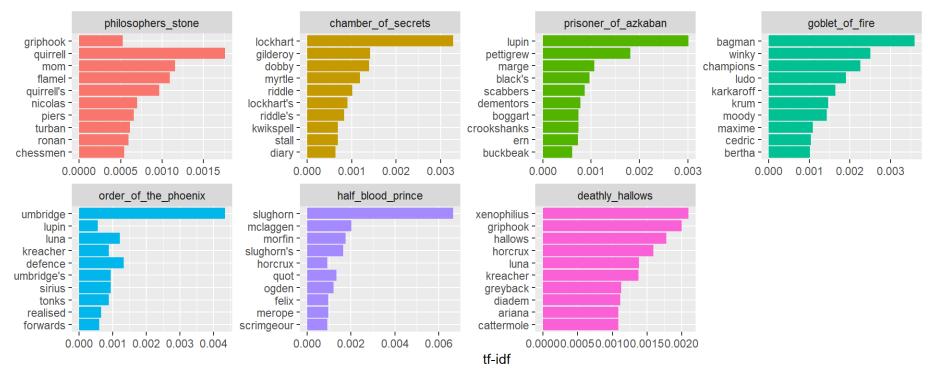
Note: idf and thus tf-idf are zero for extremely common words

Word frequency: tf-idf in R

Inspecting terms with a high tf - idf:

```
## # A tibble: 63,651 x 6
##
      book
                                                  tf
                                                       idf tf idf
                           word
                                           n
                                               <dbl> <dbl>
      <fct>
##
                           <chr>
                                       <int>
                                                             <dbl>
                           slughorn
    1 half blood prince
                                         335 0.00531 1.25 0.00665
    2 order of the phoenix umbridge
                                         496 0.00513 0.847 0.00434
##
    3 goblet of fire
##
                           bagman
                                         208 0.00286 1.25 0.00359
   4 chamber of secrets
                           lockhart
                                         197 0.00586 0.560 0.00328
    5 prisoner of azkaban
                           lupin
                                         369 0.00896 0.336 0.00301
   6 goblet of fire
                           winky
                                         145 0.00200 1.25 0.00250
##
   7 goblet of fire
                           champions
                                         84 0.00116 1.95
                                                          0.00225
   8 deathly hallows
                          xenophilius
##
                                         79 0.00108 1.95
                                                          0.00209
   9 half blood prince
                           mclaggen
                                          65 0.00103 1.95
                                                           0.00200
## 10 deathly hallows
                           griphook
                                         117 0.00159 1.25 0.00200
## # ... with 63,641 more rows
```

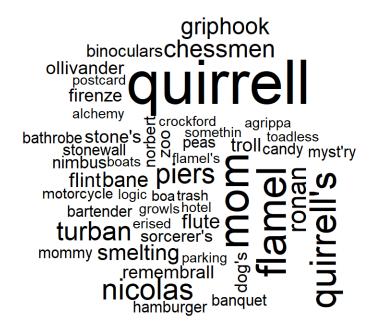
Visualized over all books:



Frequent terms in the first Harry Potter book, the Philosophers stone:



Distinctive terms (uinsg tf-idf in the first Harry Potter book, the Philosophers stone:



Word frequency - another example

What are the most characteristic words used by reviewers to describe beers of different styles?

kaylinpavlik.com/tidy-textbeer

Top TF-IDF Terms for Selected Beer Styles

American Amber / Red Ale	American Barleywine	American Blonde Ale	American Brown Ale
ambers reds ruby killian's nugget grapefruit resinous ira hemp reddish	bw bigfoot bwine molasses bourbon barelywine raisins figs cognac sherry	gluten blond obama straw golden shark dms sorghum bmc lawnmower	cocoa indonesia browns coffee maple rica hazelnut molasses wh hemp
American Double / Imperial IPA dipa mango pineapple tropical iipa dipas papaya grapefruit citra guava	American Double / Imperial Stout cocoa coffee fudge cfee bourbon molasses mocha pitch espresso jet	American IPA mango tropical pineapple grapefruit citra mosaic papaya simcoe guava tangerine	American Pale Ale (APA) grapefruit mango pineapple citra tropical snpa simcoe yerba gluten papaya
American Porter coffee cocoa mocha chocolate roast coconut roasty espresso char chocolatey	American Stout coffee cocoa espresso mocha chocolate roast chocole jet pitch nitro	American Wild Ale brett lacto acetic sours flemmy raspberry bretty 375ml bacterial barnyard	blueberry watermelon blueberries cucumber raspberry huckleberry lemonade shandy radler raspberries

Step 4. Perform an analysis

Basic text summaries

- Word frequency
- Collocation: words appearing near each other
- Concordance: the instances and contexts of a given word or set of words
- Dictionary tagging / sentiment analysis: determining the attitude of a speaker or writer

More advanced techniques

- Document classification
- Corpora comparison (corpus: group of text documents)
- Language use over time
- Topic modelling: detecting clusters
- Natural language processing

Sentiment analysis

Try to extract and identify positive/negative valence from a text.

Basic idea:

Sentiment = Total no. positive words - Total no. negative words

- Use 'sentiment dictionaries' (lexicons) to assess a score (positive/negative) or emotion to each term;
- In tidytext: AFINN, bing, nrc;
- There are also domain specific sentiment lexicons, for example the Loughran and McDonald dictionary of financial sentiment terms;
- More advanced methods: use classification to predict sentiment from text (e.g. tf-idf).

Sentiment analysis - AFINN

AFINN lexicon (Finn Årup Nielsen):

- assigns words with a score that runs between -5 and 5, with negative scores indicating negative sentiment and positive scores indicating positive sentiment
- terms manually labelled for valence by Finn Årup Nielsen between 2009 and 2011.
- Specifically created for sentiment analysis of microblogs such as Twitter

```
get sentiments("afinn")
## # A tibble: 2,477 x 2
##
     word
                value
     <chr>
                <dbl>
##
   1 abandon
                   -2
   2 abandoned
                   -2
   3 abandons
                   -2
   4 abducted
                   -2
   5 abduction
                   -2
   6 abductions
                   -2
   7 abhor
                   -3
   8 abhorred
                   -3
   9 abhorrent
                   -3
## 10 abhors
                   -3
## # ... with 2,467 more rows
```

Sentiment analysis - bing

bing lexicon (Bing Liu and collaborators):

- categorizes words into positive and negative categories
- Developed for mining and summarizing customer reviews
- First, adjective words were identified using a natural language processing method. Second, for each opinion word, semantic orientation was determined

```
## # A tibble: 6,786 x 2
                  sentiment
##
      word
      <chr>
                 <chr>>
##
   1 2-faces
                 negative
   2 abnormal
                  negative
   3 abolish
##
                  negative
   4 abominable negative
   5 abominably negative
   6 abominate
                  negative
   7 abomination negative
   8 abort
                  negative
   9 aborted
                  negative
                  negative
## 10 aborts
## # ... with 6,776 more rows
```

Sentiment analysis - nrc

nrc lexicon (Saif Mohammad and Peter Turney):

- categorizes words into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust
- annotations were manually done by crowdsourcing

```
## # A tibble: 13,901 x 2
     word
                 sentiment
##
     <chr>>
                 <chr>>
##
   1 abacus
##
                 trust
                 fear
   2 abandon
   3 abandon
                 negative
##
   4 abandon
                 sadness
   5 abandoned
                 anger
   6 abandoned
                 fear
   7 abandoned
                 negative
   8 abandoned
                 sadness
   9 abandonment anger
## 10 abandonment fear
## # ... with 13,891 more rows
```

Example NRC

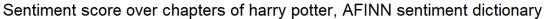
Most common joy words in Harry Potter

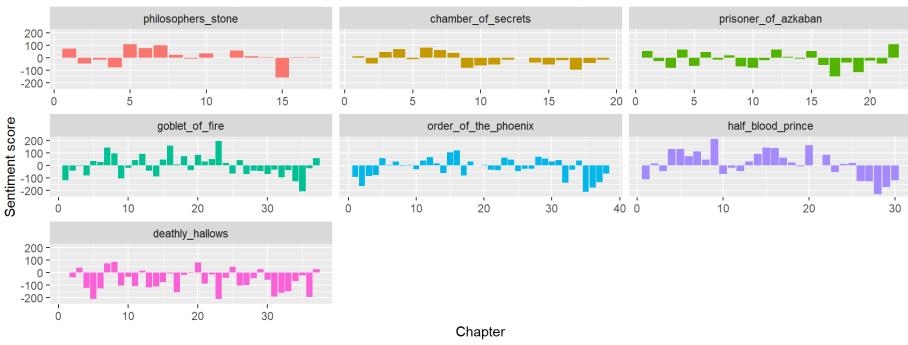
```
## # A tibble: 440 x 2
     word
                  n
     <chr> <int>
   1 good
               1065
   2 found
             614
   3 ministry 576
##
   4 feeling
              391
   5 magical
                380
   6 white
##
                331
   7 green
                294
   8 mother
                284
   9 smile
                244
## 10 hope
                234
## # ... with 430 more rows
```

Most common fear words in Harry Potter

```
## # A tibble: 888 x 2
     word
##
                n
   <chr> <int>
## 1 death
              757
## 2 feeling
              391
  3 fire
              388
## 4 crouch
              297
   5 shaking
              277
## 6 scar
              276
              269
  7 mad
## 8 kill
              267
## 9 elf
              259
## 10 watch
              256
## # ... with 878 more rows
```

Example AFINN

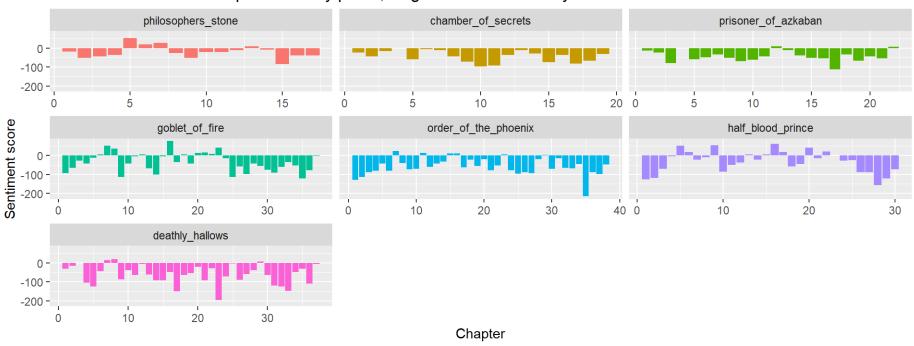




Plot of novel four to six changes towards a negative sentiment towards the end, while the seventh novel has a quite negative sentiment overall.

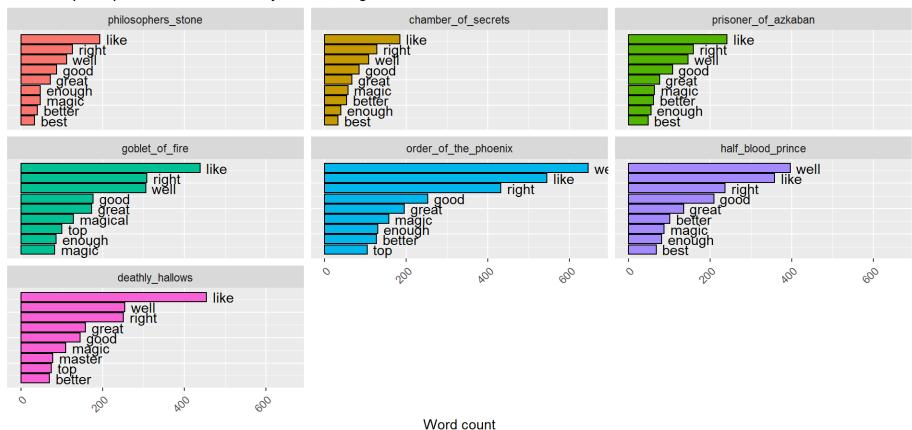
Example bing

Sentiment score over chapters of harry potter, bing sentiment dictionary



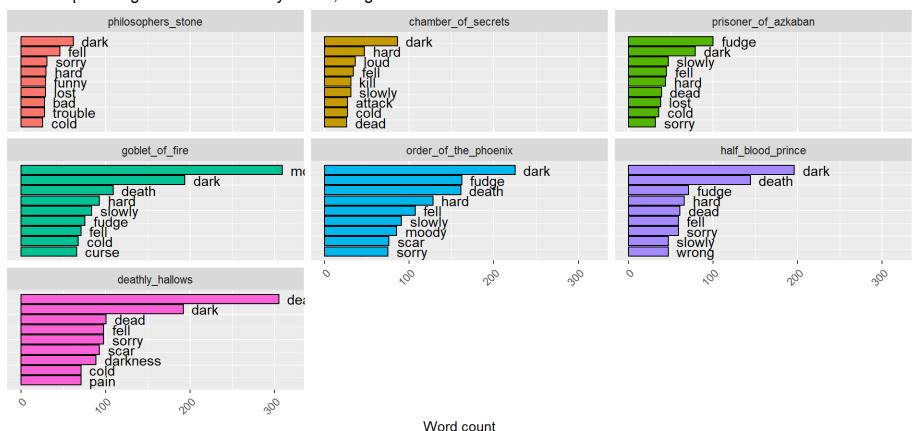
Top words contributing to a positive sentiment

Most frequent positive words in Harry Potter, bing lexicon



Top words contributing to a negative sentiment

Most frequent negative words in Harry Potter, bing lexicon

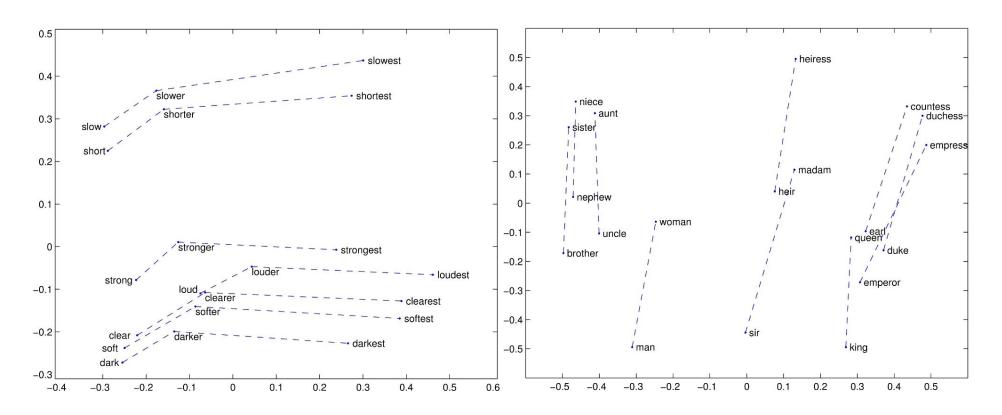


Sentiment analysis

Hurdles:

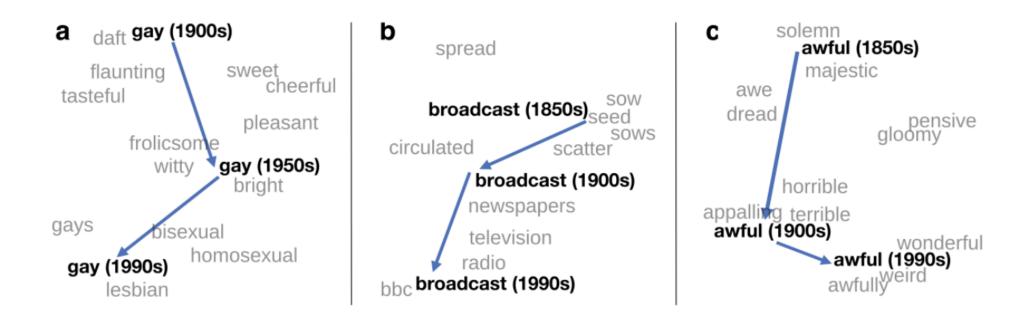
- Consider the sentence 'I am not happy'. How would this be scored using sentiment analysis as presented?
 - When only investigating one word at the time, qualifiers before a word are not taken into consideration
- Sentiment analysis is language and dictionary dependent. If we would want to label a Dutch text, we are dependent on the availability of a Dutch sentiment lexicon, or have to create one ourselves
- Size: one sentence or small paragraph (like tweets or customer reviews) often have a clear sementic orientation. Long texts often contain positive and negative sentiments, which average out to about zero. Hence, more suited for short texts

Word embeddings: basic idea



Source: https://ruder.io/secret-word2vec/

Word embeddings: change in meaning over time



Source: Hamilton et al. (2016) http://doi.org/10.18653/v1/P16-1141

Conclusion

- The basic **problem** of text mining is that text is not a neat data set
- The solution to this problem is preprocessing and representation
- $\cdot \rightarrow$ preprocessing & representation determine outcome and its usefulness!
- Harry Potter example:
 - Preprocessing: lowercasing, stopword removal, (what else?)
 - Representation: tf-idf bag-of-words
- Often these very simple choices give a very reasonable baseline,
- surprising amount of insight, even though computers don't know language,
 but
- Many other choices possible... it matters **a lot** \rightarrow plenty left to learn!