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This week
• Day 1:  Clustering #2: Model-based clustering
• Day 2: Text mining #1
• Day 3: Text mining #2



Readings about text mining
• Jurafsky & Martin (2021). 

Speech and language 
processing (3rd ed draft) 
https://web.stanford.edu/~jurafsky/slp3/
• Sections 
• 2.1, 2.4, (regular expressions)
• 6.2, 6.3, 6.4, 6.5, 6.8

• Silge & Robinson (2021). Text 
mining with R: A tidy approach. 
https://www.tidytextmining.com/
• Chapter 3

• More accessible (?) intro to 
regular expressions:
• R4 data science ch. 14
• https://r4ds.had.co.nz/strings.htm

l#matching-patterns-with-regular-
expressions 3rd EDITION

https://web.stanford.edu/~jurafsky/slp3/
https://www.tidytextmining.com/
https://r4ds.had.co.nz/strings.html


Why learn text mining
Text data is everywhere:
• websites (e.g., news), social media (e.g., twitter), databases 

(e.g., doctors’ notes), digital scans of printed materials, …
• Applications in industry: search, machine translation, sentiment 

analysis, question answering, …
• Applications in science: cognitive modelling, understanding 

bias in language, automated systematic literature reviews, …



Regular expressions



http://xkcd.com/208/

http://xkcd.com/208/


Regular expressions (regex)

• Powerful and very very useful tool for text (pre)processing
• Used in pretty much every pipeline involving text
• Typical applications:
• Extracting numbers, emails, IP-addresses, etc. 
• Validating text inputs in GUIs
• Reformatting annoying incorrect dates (everything not yyyy-mm-dd)
• Scrubbing names and addresses for pseudonimization

• Powerful: e.g. J&M implement (part of) ELIZA (see link) in regex!
• Cryptic & takes a lot of practice!



Basic matching using stringr



Basic matching
. matches any character



Anchors
By default, regular expressions will match any part of a string. 
It’s often useful to anchor the regular expression so that it 
matches from the start or end of the string. You can use:
• ^ to match the start of the string.
• $ to match the end of the string.



Game

Barbados is moving from a parliamentary 
constitutional monarchy under the hereditary 
monarch of Barbados (currently Queen 
Elizabeth II) to a parliamentary republic with 
a ceremonial elected president as head of 
state. 

• Match the word “monarch”
• Match all 8-letter words



Examples

Regex Matches any string that
hello contains {hello}
gray|grey contains {gray, grey}
gr(a|e)y contains {gray, grey}
gr[ae]y contains {gray, grey}
b[aeiou]bble contains {babble, bebble, bibble, bobble, bubble}
[b-chm-pP]at|ot contains {bat, cat, hat, mat, nat, oat, pat, Pat, ot}

colou?r contains {color, colour}



More complicated examples

Regex Matches any string that
\d contains {0,1,2,3,4,5,6,7,8,9}
1\d{10} contains an 11-digit string starting with a 1
\d+(\.\d\d)? contains a positive integer or a floating point number with 

exactly two characters after the decimal point.
^dog begins with "dog"
dog$ ends with "dog"
^dog$ is exactly "dog"



Matching and Extracting Data

• The function str_detect() returns a True/False depending 
on whether the string matches  the regular expression

• If we actually want the matching strings to be extracted, we use 
str_extract()

> library(stringr)
> s = 'My 2 favorite numbers are 19 and 42'
> str_extract_all(s, '[0-9]+')
[[1]]
[1] "2"  "19" "42"

[0-9]+

One or more digits



Regular expression conclusion
• You have now heard of regular expressions
• And might have a basic idea of what you might do with them
• The only way to really learn, however, is practice
• Read the set texts (J&M ch 2 and/or R4DS ch 14)
• Next time you encounter some text you need to work on think 

“can I do this using regular expressions?”
• The answer is probably “yes”.



Challenge problem: regex crossword



Why text mining

Text data is everywhere – websites (e.g., news), social media (e.g., twitter),
databases (e.g., doctors’ notes), digital scans of printed materials, …
A lot of world’s data is in unstructured text format

Applications in industry: search, machine translation, sentiment analysis,
question answering, …
Applications in science: cognitive modeling, understanding bias in language,
automated systematic literature reviews, …

·

·

·

·
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Basic idea of text mining

Basic plan:

Step 2 might involve prediction (“text classification”, “sentiment analysis”),
visualization (e.g. word clouds), etc.

Text is “unstructured data”

How do we get to something structured that we can compute with?

 text has to be represented somehow

·

·

· →

1. Represent the text as something that makes sense to a computer;

2. Continue life as normal.
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Example representations: “time series”

“And the evening and the morning were the third day.”

Token time series:

Part-of-speech time series:

Etc.

Can do statistics as on any categorical time series data.

Label each token 1-8 (including “.”)·

· 1 → 2 → 3 → 1 → 2 → 4 → 5 → 2 → 6 → 7 → 8

CON  DET NOUN CON DET NOUN VERB DET ADJ
NOUN

· → → → → → → → → →
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Example representations: bag-of-words

“And the evening and the morning were the third day.”

Word count:

Word proportions:

Etc.

Can do statistics as on any rectangular data set

## s_tok 
##       .     and     day evening morning     the   third    were  
##       1       2       1       1       1       3       1       1

## s_tok 
##       .     and     day evening morning     the   third    were  
##  0.0909  0.1818  0.0909  0.0909  0.0909  0.2727  0.0909  0.0909
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Text representations

Other examples: tf-idf, topic models, embeddings, transformers

From very simple (word count) to very complex (encoder-decoder neural
networks)

(One of) the main foci of current research in natural language processing

Can usually get quite far with very simple!

·

·

·

·
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Language is hard

Different things can mean more or less the same (“data science” vs. “statistics”)

Context dependency (“You have very nice shoes”);

Same words with different meanings (“to sanction”);

Lexical ambiguity (“we saw her duck”)

Irony, sarcasm (“You should swallow disinfectant”?)

Figurative language (“He has a heart of stone”)

Negation (“not good” vs. “good”), spelling variations, jargon, abbreviations

All the above is different over languages, 99% of work is on English!

·

·

·

·

·

·

·

·
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Language is hard

We won’t solve linguistics today…
In spite of the problems, text mining can be quite effective!

·

·
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Who wrote the Wilhelmus?

https://dh2017.adho.org/abstracts/079/079.pdf
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Which ICD-10 codes should I give this doctor’s
note?

Bovengenoemde patiënt was opgenomen op op de voor het specialisme Cardiologie.

Cardiovasculaire risicofactoren: Roken(-) Diabetes(-) Hypertensie(?) Hypercholesterolemie (?)

Anamnese. Om 18.30 pijn op de borst met uitstraling naar de linkerarm, zweten, misselijk. Ambulance gebeld en bij aansluiten
monitor beeld van acuut onderwandinfarct. AMBU overdracht:.500mg aspegic iv, ticagrelor 180mg oraal, heparine, zofran eenmalig,
3x NTG spray. HD stabiel gebleven. . .Medicatie bij presentatie.Geen..

Lichamelijk onderzoek. Grauw, vegetatief, Halsvenen niet gestuwd. Cor s1 s2 geen souffles.Pulm schoon. Extr warm en slank .

Aanvullend onderzoek. AMBU ECG: Sinusritme, STEMI inferior III)II C/vermoedelijk RCA. Coronair angiografie. (…) .Conclusie angio:
1-vatslijden..PCI

Conclusie en beleid Bovengenoemde jarige man, blanco cardiale voorgeschiedenis, werd gepresenteerd vanwege een STEMI
inferior waarvoor een spoed PCI werd verricht van de mid-RCA. Er bestaan geen relevante nevenletsels. Hij kon na de procedure
worden overgeplaatst naar de CCU van het . ..Dank voor de snelle overname. ..Medicatie bij overplaatsing. Acetylsalicylzuur
dispertablet 80mg ; oraal; 1 x per dag 80 milligram ; .Ticagrelor tablet 90mg ; oraal; 2 x per dag 90 milligram ; .Metoprolol tablet
50mg ; oraal; 2 x per dag 25 milligram ; .Atorvastatine tablet 40mg (als ca-zout-3-water) ; oraal; 1 x per dag 40 milligram ;

Samenvatting Hoofddiagnose: STEMI inferior wv PCI RCA. Geen nevenletsels. Nevendiagnoses: geen. Complicaties: geen Ontslag
naar: CCU .
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Which ICD-10 codes should I give this doctor’s
note?
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Which studies go in in my systematic review?

https://asreview.nl/
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https://asreview.nl/


Main points for today

1. Workflow of text mining

2. Pre-processing text data

3. Word and document frequency

4. Sentiment analyisis

5. conclusion
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Some useful definitions

Document: a sequence of words and punctuation, following the grammatical
rules of a language

Term: usually a word, but can be a word-pair or phrase

Corpus: a collection of documents

Lexicon: set of all unique words in a corpus

·

·

·

·
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Basic workflow for text analysis

1. Get some text

2. Organize text into ‘corpus’

3. Pre-process: e.g., remove punctuation, stopwords, lowercase

4. Create representation  actual dataset

5. Perform analysis as usual

→
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Step 1. Get some text

Typical sources:

Existing corpora, e.g. newspapers, libraries, etc. - examples:
https://www.clarin.eu/portal, https://new.linguistlist.org/studentportal/

Web scraping

·

·

library('rvest') 
webpage <- read_html('https://en.wikipedia.org/wiki/COVID-19_pandemic')

Social media APIs (e.g. https://rtweet.info/)

…
·

·
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Step 2. Organize text into ‘corpus’

Text corpus: typically stores the text as a raw character string with metadata
and details stored with the text

Example: 50 Years of Pop Music Lyrics (Kaylin Walker)

## Rows: 5,100 
## Columns: 6 
## $ Rank   <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1... 
## $ Song   <chr> "wooly bully", "i cant help myself sugar pie honey bunch", "... 
## $ Artist <chr> "sam the sham and the pharaohs", "four tops", "the rolling s... 
## $ Year   <dbl> 1965, 1965, 1965, 1965, 1965, 1965, 1965, 1965, 1965, 1965, ... 
## $ Lyrics <chr> "sam the sham miscellaneous wooly bully wooly bully sam the ... 
## $ Source <dbl> 3, 1, 1, 1, 1, 1, 3, 5, 1, 3, 3, 1, 3, 1, 3, 3, 3, 3, 1, 1, ...
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Step 2. Organize text into ‘corpus’

Text corpus: typically stores the text as a raw character string with metadata
and details stored with the text

Example: 50 Years of Pop Music Lyrics (Kaylin Walker)

[1] “is this the real life is this just fantasy caught in a landslide no escape
from reality open your eyes look up to the skies and see im just a poor
boy i need no sympathy because im easy come easy go a little high little
low anyway the wind blows doesnt really matter to me to memama just
killed a man put a gun against his head pulled my trigger now hes dead
mama life had just begun but now ive gone and thrown it all away mama
ooo didnt mean to make you cry if im not back again this time tomorrow
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Step 3. Preprocessing

“And the evning and the morning were the third day.”

Typical steps:

Not all of these are appropriate at all times!

Stemming (“running” “run”) or Lemmatization (“were” “is”)

Lowercasing (“And” “and”)

Stopword removal (“evning morning is third day.”)

Punctuation removal (“evning morning is third day”)

Number removal (“day 3” “day”)

Spell correction (“evning” “evening”)

Tokenization (“evening”, “morning”, “is”, “third”, “day”)

· → →

· →

·

·

· →

· →

·

20/54



Stemming

Unifies variations in the text data:

Inflectional stemming:

Stemming to root:

·

e.g., ’walking’, ‘walks’, ‘walked’  walk- →

·

Remove plurals

Normalize verb tenses

Remove other affixes

-

-

-

·

Reduce word to most basic element

More aggressive than inflictional

e.g., ‘denormalization’  norm;

e.g., ‘Apply’, ‘applications’, ‘reapplied’  apply

-

-

- →

- →
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Tokenization with tidytext

function unnest_tokens()  one-term-per-row (automatically removes
punctuation)

→

## # A tibble: 566 x 6 
##     Rank Song        Artist                            Year Source token    
##    <dbl> <chr>       <chr>                            <dbl>  <dbl> <chr>    
##  1     1 uptown funk mark ronson featuring bruno mars  2015      1 this     
##  2     1 uptown funk mark ronson featuring bruno mars  2015      1 hit      
##  3     1 uptown funk mark ronson featuring bruno mars  2015      1 that     
##  4     1 uptown funk mark ronson featuring bruno mars  2015      1 ice      
##  5     1 uptown funk mark ronson featuring bruno mars  2015      1 cold     
##  6     1 uptown funk mark ronson featuring bruno mars  2015      1 michelle 
##  7     1 uptown funk mark ronson featuring bruno mars  2015      1 pfeiffer 
##  8     1 uptown funk mark ronson featuring bruno mars  2015      1 that     
##  9     1 uptown funk mark ronson featuring bruno mars  2015      1 white    
## 10     1 uptown funk mark ronson featuring bruno mars  2015      1 gold     
## # ... with 556 more rows
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Still including stop words: With stopwords removed

Removal of stop words - song lyrics

In tidytext: anti_join(stop_words) on unnest_tokens() object.

Also note the removed punctuation by unnest_tokens.

## # A tibble: 42,157 x 2 
##    token     n 
##    <chr> <int> 
##  1 you   64606 
##  2 i     56472 
##  3 the   53451 
##  4 to    35752 
##  5 and   32555 
##  6 me    31170 
##  7 a     29282 
##  8 it    25688 
##  9 my    22821 
## 10 in    18553 
## # ... with 42,147 more rows

## # A tibble: 41,561 x 2 
##    token     n 
##    <chr> <int> 
##  1 love  15283 
##  2 im    14279 
##  3 dont  11587 
##  4 baby   9098 
##  5 youre  6592 
##  6 yeah   6259 
##  7 time   5176 
##  8 girl   4803 
##  9 wanna  4767 
## 10 gonna  4550 
## # ... with 41,551 more rows
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Step 4. Create representation  actual dataset

Bag of words

“Document - Term matrix” (DTM)

light god darkness called day let said divided good saw evening first morning night

d1 2 1 0 0 0 1 1 0 0 0 0 0 0 0

d2 2 2 1 0 0 0 0 1 1 1 0 0 0 0

d3 1 1 1 2 2 0 0 0 0 0 1 1 1 1

→

d1: “And God said, Let there be light: and there was light.”

d2: “And God saw the light, that it was good: and God divided the light from the darkness.”

d3: “And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.”

·

·

·
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DTM in R

lyricsCorpus <- Corpus(VectorSource(song_lyrics$Lyrics)) 
lyricsDTM <- DocumentTermMatrix(lyricsCorpus)

## <<DocumentTermMatrix (documents: 5100, terms: 41762)>> 
## Non-/sparse entries: 473454/212512746 
## Sparsity           : 100% 
## Maximal term length: 46 
## Weighting          : term frequency (tf) 
## Sample             : 
##       Terms 
## Docs   all and dont know like love that the you your 
##   2993   5  44    2    0    6    0    6  44   5    1 
##   3319   6  18   18    7    7    1   20  44  30    3 
##   3378   0  52    3    3    7    0    5  48  44    4 
##   3551  13  26    5    4   12    1    2  38  30   11 
##   3762   4  24   31    0    6    0    7  31  16    7 
##   3840   7  24    3    2    8    2    4  39  22    1 
##   3959  20  27   10   15   11    1    7  54  16    3 
##   4249   6  29   17    7   14    4   12  32  23   12 
##   4488  10  22    6    5   11    0    6  48  14    2 
##   4571  10  22    6    5   11    0    6  48  14    2
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Summarizing tokens per document

Bag of words model:

The tidy text format and the dtm can be converted to and from one another:

·

Ignores word order

Document-term matrix (dtm): One-document-per-row and one-term-per-
column

Cells can contain counts, proportions, or (more common) scaled
proportions (tf-idf)

-

-

-

·

tidy() turns a document-term matrix into a tidy data frame

cast() turns a tidy one-term-per-row data frame into a matrix

-

-
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Word frequency

Option: quantify how frequently a
word occurs in a document ( ),
and inspect most frequent words
within a document

However, many words that
appear often do not seem very
informative, even after removing
stop words

For example, words in the
different books of the Harry
Potter series:

·
tf

·

·

## Warning in NextMethod(): number of items to replace 
## replacement length

## # A tibble: 63,651 x 4 
##    book                 word         n total 
##    <fct>                <chr>    <int> <int> 
##  1 order_of_the_phoenix harry     3730 96777 
##  2 goblet_of_fire       harry     2936 72663 
##  3 deathly_hallows      harry     2770 73406 
##  4 half_blood_prince    harry     2581 63098 
##  5 prisoner_of_azkaban  harry     1824 41188 
##  6 chamber_of_secrets   harry     1503 33621 
##  7 order_of_the_phoenix hermione  1220 96777 
##  8 philosophers_stone   harry     1213 28585 
##  9 order_of_the_phoenix ron       1189 96777 
## 10 deathly_hallows      hermione  1077 73406 
## # ... with 63,641 more rows
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Word frequency: Zipf’s law

Most words occur rarely and only very few words occur frequently.

“Zipf’s law”:  [https://en.wikipedia.org/wiki/Zipf%27s_law]tf(rank) ∝ 1
rankc

29/54

https://en.wikipedia.org/wiki/Zipf%27s_law


“Term frequency-inverse document frequency”
(tf-idf)

IDEA 1: Add unimportant frequent words to the list of stop words, but some of
these words might be more important in some documents than others

IDEA 2: decrease the weight for commonly used words and increases the
weight for words that are not used very much in a collection of documents

IDEA 2 is called the inverse document frequency (idf):

When  is combined with , we get the , which is intended as
importance of a word to a document in a corpus

·

·

·

idf(term) = ln( )ndocuments

ndocuments containing term

· idf tf tf-idf
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tf “Document - Term matrix” (DTM)

Bag of words

“Document - Term matrix” (DTM) (raw word counts)

light god darkness called day let said divided good saw evening first morning night

d1 2 1 0 0 0 1 1 0 0 0 0 0 0 0

d2 2 2 1 0 0 0 0 1 1 1 0 0 0 0

d3 1 1 1 2 2 0 0 0 0 0 1 1 1 1

d1: “And God said, Let there be light: and there was light.”

d2: “And God saw the light, that it was good: and God divided the light from the darkness.”

d3: “And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.”

·

·

·
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tf-idf “Document - Term matrix” (DTM)

Bag of words

“Document - Term matrix” (DTM) (tf-idf)

light god darkness called day let said divided good saw evening first morning night

d1 0 0 0.000 0.0 0.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d2 0 0 0.405 0.0 0.0 0.0 0.0 1.1 1.1 1.1 0.0 0.0 0.0 0.0

d3 0 0 0.405 2.2 2.2 0.0 0.0 0.0 0.0 0.0 1.1 1.1 1.1 1.1

d1: “And God said, Let there be light: and there was light.”

d2: “And God saw the light, that it was good: and God divided the light from the darkness.”

d3: “And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.”

·

·

·
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tf-idf in R

Note:  and thus  are zero for extremely common words

hp_words_count <- hp_words_count %>% bind_tf_idf(word, book, n)

## # A tibble: 63,651 x 6 
##    book                 word         n     tf   idf tf_idf 
##    <fct>                <chr>    <int>  <dbl> <dbl>  <dbl> 
##  1 order_of_the_phoenix harry     3730 0.0385     0      0 
##  2 goblet_of_fire       harry     2936 0.0404     0      0 
##  3 deathly_hallows      harry     2770 0.0377     0      0 
##  4 half_blood_prince    harry     2581 0.0409     0      0 
##  5 prisoner_of_azkaban  harry     1824 0.0443     0      0 
##  6 chamber_of_secrets   harry     1503 0.0447     0      0 
##  7 order_of_the_phoenix hermione  1220 0.0126     0      0 
##  8 philosophers_stone   harry     1213 0.0424     0      0 
##  9 order_of_the_phoenix ron       1189 0.0123     0      0 
## 10 deathly_hallows      hermione  1077 0.0147     0      0 
## # ... with 63,641 more rows

idf tf-idf
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Word frequency: tf-idf in R

Inspecting terms with a high :tf − idf

## # A tibble: 63,651 x 6 
##    book                 word            n      tf   idf  tf_idf 
##    <fct>                <chr>       <int>   <dbl> <dbl>   <dbl> 
##  1 half_blood_prince    slughorn      335 0.00531 1.25  0.00665 
##  2 order_of_the_phoenix umbridge      496 0.00513 0.847 0.00434 
##  3 goblet_of_fire       bagman        208 0.00286 1.25  0.00359 
##  4 chamber_of_secrets   lockhart      197 0.00586 0.560 0.00328 
##  5 prisoner_of_azkaban  lupin         369 0.00896 0.336 0.00301 
##  6 goblet_of_fire       winky         145 0.00200 1.25  0.00250 
##  7 goblet_of_fire       champions      84 0.00116 1.95  0.00225 
##  8 deathly_hallows      xenophilius    79 0.00108 1.95  0.00209 
##  9 half_blood_prince    mclaggen       65 0.00103 1.95  0.00200 
## 10 deathly_hallows      griphook      117 0.00159 1.25  0.00200 
## # ... with 63,641 more rows
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Word frequency

Visualized over all books:
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Word frequency

Frequent terms in the first Harry Potter book, the Philosophers stone:
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Word frequency

Distinctive terms (uinsg  in the first Harry Potter book, the Philosophers
stone:

tf − idf
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What are the most
characteristic words used
by reviewers to describe
beers of different styles? 

kaylinpavlik.com/tidy-text-
beer

Word frequency - another example
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Basic text summaries More advanced techniques

Step 4. Perform an analysis

Word frequency

Collocation: words appearing near
each other

Concordance: the instances and
contexts of a given word or set of
words

Dictionary tagging / sentiment
analysis: determining the attitude of
a speaker or writer

·

·

·

·

Document classification

Corpora comparison (corpus: group
of text documents)

Language use over time

Topic modelling: detecting clusters

Natural language processing

·

·

·

·

·
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Sentiment analysis

Try to extract and identify positive/negative valence from a text.

Basic idea:

Sentiment = Total no. positive words − Total no. negative words

Use ‘sentiment dictionaries’ (lexicons) to assess a score (positive/negative) or
emotion to each term;

In tidytext: AFINN, bing, nrc;

There are also domain specific sentiment lexicons, for example the Loughran
and McDonald dictionary of financial sentiment terms;

More advanced methods: use classification to predict sentiment from text
(e.g. tf-idf).

·

·

·

·
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Sentiment analysis - AFINN

AFINN lexicon (Finn Årup Nielsen):

assigns words with a score that runs
between -5 and 5, with negative
scores indicating negative sentiment
and positive scores indicating positive
sentiment

terms manually labelled for valence
by Finn Årup Nielsen between 2009
and 2011.

Specifically created for sentiment
analysis of microblogs such as Twitter

·

·

·

get_sentiments("afinn")

## # A tibble: 2,477 x 2 
##    word       value 
##    <chr>      <dbl> 
##  1 abandon       -2 
##  2 abandoned     -2 
##  3 abandons      -2 
##  4 abducted      -2 
##  5 abduction     -2 
##  6 abductions    -2 
##  7 abhor         -3 
##  8 abhorred      -3 
##  9 abhorrent     -3 
## 10 abhors        -3 
## # ... with 2,467 more rows
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Sentiment analysis - bing

bing lexicon (Bing Liu and collaborators):

categorizes words into positive and
negative categories

Developed for mining and
summarizing customer reviews

First, adjective words were identified
using a natural language processing
method. Second, for each opinion
word, semantic orientation was
determined

·

·

·

## # A tibble: 6,786 x 2 
##    word        sentiment 
##    <chr>       <chr>     
##  1 2-faces     negative  
##  2 abnormal    negative  
##  3 abolish     negative  
##  4 abominable  negative  
##  5 abominably  negative  
##  6 abominate   negative  
##  7 abomination negative  
##  8 abort       negative  
##  9 aborted     negative  
## 10 aborts      negative  
## # ... with 6,776 more rows
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Sentiment analysis - nrc

nrc lexicon (Saif Mohammad and Peter Turney):

categorizes words into categories of
positive, negative, anger, anticipation,
disgust, fear, joy, sadness, surprise,
and trust

annotations were manually done by
crowdsourcing

·

·

## # A tibble: 13,901 x 2 
##    word        sentiment 
##    <chr>       <chr>     
##  1 abacus      trust     
##  2 abandon     fear      
##  3 abandon     negative  
##  4 abandon     sadness   
##  5 abandoned   anger     
##  6 abandoned   fear      
##  7 abandoned   negative  
##  8 abandoned   sadness   
##  9 abandonment anger     
## 10 abandonment fear      
## # ... with 13,891 more rows
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Most common joy words in Harry
Potter

Most common fear words in Harry
Potter

Example NRC

## # A tibble: 440 x 2 
##    word         n 
##    <chr>    <int> 
##  1 good      1065 
##  2 found      614 
##  3 ministry   576 
##  4 feeling    391 
##  5 magical    380 
##  6 white      331 
##  7 green      294 
##  8 mother     284 
##  9 smile      244 
## 10 hope       234 
## # ... with 430 more rows

## # A tibble: 888 x 2 
##    word        n 
##    <chr>   <int> 
##  1 death     757 
##  2 feeling   391 
##  3 fire      388 
##  4 crouch    297 
##  5 shaking   277 
##  6 scar      276 
##  7 mad       269 
##  8 kill      267 
##  9 elf       259 
## 10 watch     256 
## # ... with 878 more rows
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Example AFINN

Plot of novel four to six changes towards a negative sentiment towards the end,
while the seventh novel has a quite negative sentiment overall.
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Example bing
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Top words contributing to a positive sentiment
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Top words contributing to a negative sentiment
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Sentiment analysis

Hurdles:

Consider the sentence ‘I am not happy’. How would this be scored using
sentiment analysis as presented?

Sentiment analysis is language and dictionary dependent. If we would want to
label a Dutch text, we are dependent on the availability of a Dutch sentiment
lexicon, or have to create one ourselves

Size: one sentence or small paragraph (like tweets or customer reviews) often
have a clear sementic orientation. Long texts often contain positive and
negative sentiments, which average out to about zero. Hence, more suited for
short texts

·

When only investigating one word at the time, qualifiers before a word are
not taken into consideration

-

·

·
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Word embeddings: basic idea

Source: https://ruder.io/secret-word2vec/
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Word embeddings: change in meaning over time

Source: Hamilton et al. (2016) http://doi.org/10.18653/v1/P16-1141
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Conclusion

The basic problem of text mining is that text is not a neat data set

The solution to this problem is preprocessing and representation

 preprocessing & representation determine outcome and its usefulness!

Harry Potter example:

Often these very simple choices give a very reasonable baseline,

surprising amount of insight, even though computers don’t know language,
but

Many other choices possible… it matters a lot  plenty left to learn!

·

·

· →

·

Preprocessing: lowercasing, stopword removal, (what else?)

Representation: tf-idf bag-of-words

-

-

·

·

· →
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