
DL Oberski
Department of Methodology & Statistics

Utrecht University

Data Wrangling and Data Analysis
Text mining #1

This week
• Day 1: Clustering #2: Model-based clustering
• Day 2: Text mining #1
• Day 3: Text mining #2

Readings about text mining
• Jurafsky & Martin (2021).

Speech and language
processing (3rd ed draft)
https://web.stanford.edu/~jurafsky/slp3/
• Sections
• 2.1, 2.4, (regular expressions)
• 6.2, 6.3, 6.4, 6.5, 6.8

• Silge & Robinson (2021). Text
mining with R: A tidy approach.
https://www.tidytextmining.com/
• Chapter 3

• More accessible (?) intro to
regular expressions:
• R4 data science ch. 14
• https://r4ds.had.co.nz/strings.htm

l#matching-patterns-with-regular-
expressions 3rd EDITION

https://web.stanford.edu/~jurafsky/slp3/
https://www.tidytextmining.com/
https://r4ds.had.co.nz/strings.html

Why learn text mining
Text data is everywhere:
• websites (e.g., news), social media (e.g., twitter), databases

(e.g., doctors’ notes), digital scans of printed materials, …
• Applications in industry: search, machine translation, sentiment

analysis, question answering, …
• Applications in science: cognitive modelling, understanding

bias in language, automated systematic literature reviews, …

Regular expressions

http://xkcd.com/208/

http://xkcd.com/208/

Regular expressions (regex)

• Powerful and very very useful tool for text (pre)processing
• Used in pretty much every pipeline involving text
• Typical applications:
• Extracting numbers, emails, IP-addresses, etc.
• Validating text inputs in GUIs
• Reformatting annoying incorrect dates (everything not yyyy-mm-dd)
• Scrubbing names and addresses for pseudonimization

• Powerful: e.g. J&M implement (part of) ELIZA (see link) in regex!
• Cryptic & takes a lot of practice!

Basic matching using stringr

Basic matching
. matches any character

Anchors
By default, regular expressions will match any part of a string.
It’s often useful to anchor the regular expression so that it
matches from the start or end of the string. You can use:
• ^ to match the start of the string.
• $ to match the end of the string.

Game

Barbados is moving from a parliamentary
constitutional monarchy under the hereditary
monarch of Barbados (currently Queen
Elizabeth II) to a parliamentary republic with
a ceremonial elected president as head of
state.

• Match the word “monarch”
• Match all 8-letter words

Examples

Regex Matches any string that
hello contains {hello}
gray|grey contains {gray, grey}
gr(a|e)y contains {gray, grey}
gr[ae]y contains {gray, grey}
b[aeiou]bble contains {babble, bebble, bibble, bobble, bubble}
[b-chm-pP]at|ot contains {bat, cat, hat, mat, nat, oat, pat, Pat, ot}

colou?r contains {color, colour}

More complicated examples

Regex Matches any string that
\d contains {0,1,2,3,4,5,6,7,8,9}
1\d{10} contains an 11-digit string starting with a 1
\d+(\.\d\d)? contains a positive integer or a floating point number with

exactly two characters after the decimal point.
^dog begins with "dog"
dog$ ends with "dog"
^dog$ is exactly "dog"

Matching and Extracting Data

• The function str_detect() returns a True/False depending
on whether the string matches the regular expression

• If we actually want the matching strings to be extracted, we use
str_extract()

> library(stringr)
> s = 'My 2 favorite numbers are 19 and 42'
> str_extract_all(s, '[0-9]+')
[[1]]
[1] "2" "19" "42"

[0-9]+

One or more digits

Regular expression conclusion
• You have now heard of regular expressions
• And might have a basic idea of what you might do with them
• The only way to really learn, however, is practice
• Read the set texts (J&M ch 2 and/or R4DS ch 14)
• Next time you encounter some text you need to work on think

“can I do this using regular expressions?”
• The answer is probably “yes”.

Challenge problem: regex crossword

Why text mining

Text data is everywhere – websites (e.g., news), social media (e.g., twitter),
databases (e.g., doctors’ notes), digital scans of printed materials, …
A lot of world’s data is in unstructured text format

Applications in industry: search, machine translation, sentiment analysis,
question answering, …
Applications in science: cognitive modeling, understanding bias in language,
automated systematic literature reviews, …

·

·

·

·

3/54

Basic idea of text mining

Basic plan:

Step 2 might involve prediction (“text classification”, “sentiment analysis”),
visualization (e.g. word clouds), etc.

Text is “unstructured data”

How do we get to something structured that we can compute with?

 text has to be represented somehow

·

·

· →

1. Represent the text as something that makes sense to a computer;

2. Continue life as normal.

4/54

Example representations: “time series”

“And the evening and the morning were the third day.”

Token time series:

Part-of-speech time series:

Etc.

Can do statistics as on any categorical time series data.

Label each token 1-8 (including “.”)·

· 1 → 2 → 3 → 1 → 2 → 4 → 5 → 2 → 6 → 7 → 8

CON DET NOUN CON DET NOUN VERB DET ADJ
NOUN

· → → → → → → → → →

5/54

Example representations: bag-of-words

“And the evening and the morning were the third day.”

Word count:

Word proportions:

Etc.

Can do statistics as on any rectangular data set

s_tok
. and day evening morning the third were
1 2 1 1 1 3 1 1

s_tok
. and day evening morning the third were
0.0909 0.1818 0.0909 0.0909 0.0909 0.2727 0.0909 0.0909

6/54

Text representations

Other examples: tf-idf, topic models, embeddings, transformers

From very simple (word count) to very complex (encoder-decoder neural
networks)

(One of) the main foci of current research in natural language processing

Can usually get quite far with very simple!

·

·

·

·

7/54

Language is hard

Different things can mean more or less the same (“data science” vs. “statistics”)

Context dependency (“You have very nice shoes”);

Same words with different meanings (“to sanction”);

Lexical ambiguity (“we saw her duck”)

Irony, sarcasm (“You should swallow disinfectant”?)

Figurative language (“He has a heart of stone”)

Negation (“not good” vs. “good”), spelling variations, jargon, abbreviations

All the above is different over languages, 99% of work is on English!

·

·

·

·

·

·

·

·

8/54

Language is hard

We won’t solve linguistics today…
In spite of the problems, text mining can be quite effective!

·

·

9/54

Who wrote the Wilhelmus?

https://dh2017.adho.org/abstracts/079/079.pdf

10/54

https://dh2017.adho.org/abstracts/079/079.pdf

Which ICD-10 codes should I give this doctor’s
note?

Bovengenoemde patiënt was opgenomen op op de voor het specialisme Cardiologie.

Cardiovasculaire risicofactoren: Roken(-) Diabetes(-) Hypertensie(?) Hypercholesterolemie (?)

Anamnese. Om 18.30 pijn op de borst met uitstraling naar de linkerarm, zweten, misselijk. Ambulance gebeld en bij aansluiten
monitor beeld van acuut onderwandinfarct. AMBU overdracht:.500mg aspegic iv, ticagrelor 180mg oraal, heparine, zofran eenmalig,
3x NTG spray. HD stabiel gebleven. . .Medicatie bij presentatie.Geen..

Lichamelijk onderzoek. Grauw, vegetatief, Halsvenen niet gestuwd. Cor s1 s2 geen souffles.Pulm schoon. Extr warm en slank .

Aanvullend onderzoek. AMBU ECG: Sinusritme, STEMI inferior III)II C/vermoedelijk RCA. Coronair angiografie. (…) .Conclusie angio:
1-vatslijden..PCI

Conclusie en beleid Bovengenoemde jarige man, blanco cardiale voorgeschiedenis, werd gepresenteerd vanwege een STEMI
inferior waarvoor een spoed PCI werd verricht van de mid-RCA. Er bestaan geen relevante nevenletsels. Hij kon na de procedure
worden overgeplaatst naar de CCU van het . ..Dank voor de snelle overname. ..Medicatie bij overplaatsing. Acetylsalicylzuur
dispertablet 80mg ; oraal; 1 x per dag 80 milligram ; .Ticagrelor tablet 90mg ; oraal; 2 x per dag 90 milligram ; .Metoprolol tablet
50mg ; oraal; 2 x per dag 25 milligram ; .Atorvastatine tablet 40mg (als ca-zout-3-water) ; oraal; 1 x per dag 40 milligram ;

Samenvatting Hoofddiagnose: STEMI inferior wv PCI RCA. Geen nevenletsels. Nevendiagnoses: geen. Complicaties: geen Ontslag
naar: CCU .

11/54

Which ICD-10 codes should I give this doctor’s
note?

12/54

Which studies go in in my systematic review?

https://asreview.nl/

13/54

https://asreview.nl/

Main points for today

1. Workflow of text mining

2. Pre-processing text data

3. Word and document frequency

4. Sentiment analyisis

5. conclusion

14/54

Some useful definitions

Document: a sequence of words and punctuation, following the grammatical
rules of a language

Term: usually a word, but can be a word-pair or phrase

Corpus: a collection of documents

Lexicon: set of all unique words in a corpus

·

·

·

·

15/54

Basic workflow for text analysis

1. Get some text

2. Organize text into ‘corpus’

3. Pre-process: e.g., remove punctuation, stopwords, lowercase

4. Create representation actual dataset

5. Perform analysis as usual

→

16/54

Step 1. Get some text

Typical sources:

Existing corpora, e.g. newspapers, libraries, etc. - examples:
https://www.clarin.eu/portal, https://new.linguistlist.org/studentportal/

Web scraping

·

·

library('rvest')
webpage <- read_html('https://en.wikipedia.org/wiki/COVID-19_pandemic')

Social media APIs (e.g. https://rtweet.info/)

…
·

·

17/54

https://www.clarin.eu/portal
https://new.linguistlist.org/studentportal/
https://rtweet.info/

Step 2. Organize text into ‘corpus’

Text corpus: typically stores the text as a raw character string with metadata
and details stored with the text

Example: 50 Years of Pop Music Lyrics (Kaylin Walker)

Rows: 5,100
Columns: 6
$ Rank <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1...
$ Song <chr> "wooly bully", "i cant help myself sugar pie honey bunch", "...
$ Artist <chr> "sam the sham and the pharaohs", "four tops", "the rolling s...
$ Year <dbl> 1965, 1965, 1965, 1965, 1965, 1965, 1965, 1965, 1965, 1965, ...
$ Lyrics <chr> "sam the sham miscellaneous wooly bully wooly bully sam the ...
$ Source <dbl> 3, 1, 1, 1, 1, 1, 3, 5, 1, 3, 3, 1, 3, 1, 3, 3, 3, 3, 1, 1, ...

18/54

https://www.kaylinpavlik.com/

Step 2. Organize text into ‘corpus’

Text corpus: typically stores the text as a raw character string with metadata
and details stored with the text

Example: 50 Years of Pop Music Lyrics (Kaylin Walker)

[1] “is this the real life is this just fantasy caught in a landslide no escape
from reality open your eyes look up to the skies and see im just a poor
boy i need no sympathy because im easy come easy go a little high little
low anyway the wind blows doesnt really matter to me to memama just
killed a man put a gun against his head pulled my trigger now hes dead
mama life had just begun but now ive gone and thrown it all away mama
ooo didnt mean to make you cry if im not back again this time tomorrow

19/54

https://www.kaylinpavlik.com/

Step 3. Preprocessing

“And the evning and the morning were the third day.”

Typical steps:

Not all of these are appropriate at all times!

Stemming (“running” “run”) or Lemmatization (“were” “is”)

Lowercasing (“And” “and”)

Stopword removal (“evning morning is third day.”)

Punctuation removal (“evning morning is third day”)

Number removal (“day 3” “day”)

Spell correction (“evning” “evening”)

Tokenization (“evening”, “morning”, “is”, “third”, “day”)

· → →

· →

·

·

· →

· →

·

20/54

Stemming

Unifies variations in the text data:

Inflectional stemming:

Stemming to root:

·

e.g., ’walking’, ‘walks’, ‘walked’ walk- →

·

Remove plurals

Normalize verb tenses

Remove other affixes

-

-

-

·

Reduce word to most basic element

More aggressive than inflictional

e.g., ‘denormalization’ norm;

e.g., ‘Apply’, ‘applications’, ‘reapplied’ apply

-

-

- →

- →

21/54

Tokenization with tidytext

function unnest_tokens() one-term-per-row (automatically removes
punctuation)

→

A tibble: 566 x 6
Rank Song Artist Year Source token
<dbl> <chr> <chr> <dbl> <dbl> <chr>
1 1 uptown funk mark ronson featuring bruno mars 2015 1 this
2 1 uptown funk mark ronson featuring bruno mars 2015 1 hit
3 1 uptown funk mark ronson featuring bruno mars 2015 1 that
4 1 uptown funk mark ronson featuring bruno mars 2015 1 ice
5 1 uptown funk mark ronson featuring bruno mars 2015 1 cold
6 1 uptown funk mark ronson featuring bruno mars 2015 1 michelle
7 1 uptown funk mark ronson featuring bruno mars 2015 1 pfeiffer
8 1 uptown funk mark ronson featuring bruno mars 2015 1 that
9 1 uptown funk mark ronson featuring bruno mars 2015 1 white
10 1 uptown funk mark ronson featuring bruno mars 2015 1 gold
... with 556 more rows

22/54

Still including stop words: With stopwords removed

Removal of stop words - song lyrics

In tidytext: anti_join(stop_words) on unnest_tokens() object.

Also note the removed punctuation by unnest_tokens.

A tibble: 42,157 x 2
token n
<chr> <int>
1 you 64606
2 i 56472
3 the 53451
4 to 35752
5 and 32555
6 me 31170
7 a 29282
8 it 25688
9 my 22821
10 in 18553
... with 42,147 more rows

A tibble: 41,561 x 2
token n
<chr> <int>
1 love 15283
2 im 14279
3 dont 11587
4 baby 9098
5 youre 6592
6 yeah 6259
7 time 5176
8 girl 4803
9 wanna 4767
10 gonna 4550
... with 41,551 more rows

23/54

Step 4. Create representation actual dataset

Bag of words

“Document - Term matrix” (DTM)

light god darkness called day let said divided good saw evening first morning night

d1 2 1 0 0 0 1 1 0 0 0 0 0 0 0

d2 2 2 1 0 0 0 0 1 1 1 0 0 0 0

d3 1 1 1 2 2 0 0 0 0 0 1 1 1 1

→

d1: “And God said, Let there be light: and there was light.”

d2: “And God saw the light, that it was good: and God divided the light from the darkness.”

d3: “And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.”

·

·

·

25/54

DTM in R

lyricsCorpus <- Corpus(VectorSource(song_lyrics$Lyrics))
lyricsDTM <- DocumentTermMatrix(lyricsCorpus)

<<DocumentTermMatrix (documents: 5100, terms: 41762)>>
Non-/sparse entries: 473454/212512746
Sparsity : 100%
Maximal term length: 46
Weighting : term frequency (tf)
Sample :
Terms
Docs all and dont know like love that the you your
2993 5 44 2 0 6 0 6 44 5 1
3319 6 18 18 7 7 1 20 44 30 3
3378 0 52 3 3 7 0 5 48 44 4
3551 13 26 5 4 12 1 2 38 30 11
3762 4 24 31 0 6 0 7 31 16 7
3840 7 24 3 2 8 2 4 39 22 1
3959 20 27 10 15 11 1 7 54 16 3
4249 6 29 17 7 14 4 12 32 23 12
4488 10 22 6 5 11 0 6 48 14 2
4571 10 22 6 5 11 0 6 48 14 2

26/54

Summarizing tokens per document

Bag of words model:

The tidy text format and the dtm can be converted to and from one another:

·

Ignores word order

Document-term matrix (dtm): One-document-per-row and one-term-per-
column

Cells can contain counts, proportions, or (more common) scaled
proportions (tf-idf)

-

-

-

·

tidy() turns a document-term matrix into a tidy data frame

cast() turns a tidy one-term-per-row data frame into a matrix

-

-

27/54

Word frequency

Option: quantify how frequently a
word occurs in a document (),
and inspect most frequent words
within a document

However, many words that
appear often do not seem very
informative, even after removing
stop words

For example, words in the
different books of the Harry
Potter series:

·
tf

·

·

Warning in NextMethod(): number of items to replace
replacement length

A tibble: 63,651 x 4
book word n total
<fct> <chr> <int> <int>
1 order_of_the_phoenix harry 3730 96777
2 goblet_of_fire harry 2936 72663
3 deathly_hallows harry 2770 73406
4 half_blood_prince harry 2581 63098
5 prisoner_of_azkaban harry 1824 41188
6 chamber_of_secrets harry 1503 33621
7 order_of_the_phoenix hermione 1220 96777
8 philosophers_stone harry 1213 28585
9 order_of_the_phoenix ron 1189 96777
10 deathly_hallows hermione 1077 73406
... with 63,641 more rows

28/54

Word frequency: Zipf’s law

Most words occur rarely and only very few words occur frequently.

“Zipf’s law”: [https://en.wikipedia.org/wiki/Zipf%27s_law]tf(rank) ∝ 1
rankc

29/54

https://en.wikipedia.org/wiki/Zipf%27s_law

“Term frequency-inverse document frequency”
(tf-idf)

IDEA 1: Add unimportant frequent words to the list of stop words, but some of
these words might be more important in some documents than others

IDEA 2: decrease the weight for commonly used words and increases the
weight for words that are not used very much in a collection of documents

IDEA 2 is called the inverse document frequency (idf):

When is combined with , we get the , which is intended as
importance of a word to a document in a corpus

·

·

·

idf(term) = ln()ndocuments

ndocuments containing term

· idf tf tf-idf

30/54

tf “Document - Term matrix” (DTM)

Bag of words

“Document - Term matrix” (DTM) (raw word counts)

light god darkness called day let said divided good saw evening first morning night

d1 2 1 0 0 0 1 1 0 0 0 0 0 0 0

d2 2 2 1 0 0 0 0 1 1 1 0 0 0 0

d3 1 1 1 2 2 0 0 0 0 0 1 1 1 1

d1: “And God said, Let there be light: and there was light.”

d2: “And God saw the light, that it was good: and God divided the light from the darkness.”

d3: “And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.”

·

·

·

31/54

tf-idf “Document - Term matrix” (DTM)

Bag of words

“Document - Term matrix” (DTM) (tf-idf)

light god darkness called day let said divided good saw evening first morning night

d1 0 0 0.000 0.0 0.0 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d2 0 0 0.405 0.0 0.0 0.0 0.0 1.1 1.1 1.1 0.0 0.0 0.0 0.0

d3 0 0 0.405 2.2 2.2 0.0 0.0 0.0 0.0 0.0 1.1 1.1 1.1 1.1

d1: “And God said, Let there be light: and there was light.”

d2: “And God saw the light, that it was good: and God divided the light from the darkness.”

d3: “And God called the light Day, and the darkness he called Night. And the evening and the morning were the first day.”

·

·

·

32/54

tf-idf in R

Note: and thus are zero for extremely common words

hp_words_count <- hp_words_count %>% bind_tf_idf(word, book, n)

A tibble: 63,651 x 6
book word n tf idf tf_idf
<fct> <chr> <int> <dbl> <dbl> <dbl>
1 order_of_the_phoenix harry 3730 0.0385 0 0
2 goblet_of_fire harry 2936 0.0404 0 0
3 deathly_hallows harry 2770 0.0377 0 0
4 half_blood_prince harry 2581 0.0409 0 0
5 prisoner_of_azkaban harry 1824 0.0443 0 0
6 chamber_of_secrets harry 1503 0.0447 0 0
7 order_of_the_phoenix hermione 1220 0.0126 0 0
8 philosophers_stone harry 1213 0.0424 0 0
9 order_of_the_phoenix ron 1189 0.0123 0 0
10 deathly_hallows hermione 1077 0.0147 0 0
... with 63,641 more rows

idf tf-idf

33/54

Word frequency: tf-idf in R

Inspecting terms with a high :tf − idf

A tibble: 63,651 x 6
book word n tf idf tf_idf
<fct> <chr> <int> <dbl> <dbl> <dbl>
1 half_blood_prince slughorn 335 0.00531 1.25 0.00665
2 order_of_the_phoenix umbridge 496 0.00513 0.847 0.00434
3 goblet_of_fire bagman 208 0.00286 1.25 0.00359
4 chamber_of_secrets lockhart 197 0.00586 0.560 0.00328
5 prisoner_of_azkaban lupin 369 0.00896 0.336 0.00301
6 goblet_of_fire winky 145 0.00200 1.25 0.00250
7 goblet_of_fire champions 84 0.00116 1.95 0.00225
8 deathly_hallows xenophilius 79 0.00108 1.95 0.00209
9 half_blood_prince mclaggen 65 0.00103 1.95 0.00200
10 deathly_hallows griphook 117 0.00159 1.25 0.00200
... with 63,641 more rows

34/54

Word frequency

Visualized over all books:

35/54

Word frequency

Frequent terms in the first Harry Potter book, the Philosophers stone:

36/54

Word frequency

Distinctive terms (uinsg in the first Harry Potter book, the Philosophers
stone:

tf − idf

37/54

What are the most
characteristic words used
by reviewers to describe
beers of different styles?

kaylinpavlik.com/tidy-text-
beer

Word frequency - another example

38/54

Basic text summaries More advanced techniques

Step 4. Perform an analysis

Word frequency

Collocation: words appearing near
each other

Concordance: the instances and
contexts of a given word or set of
words

Dictionary tagging / sentiment
analysis: determining the attitude of
a speaker or writer

·

·

·

·

Document classification

Corpora comparison (corpus: group
of text documents)

Language use over time

Topic modelling: detecting clusters

Natural language processing

·

·

·

·

·

40/54

Sentiment analysis

Try to extract and identify positive/negative valence from a text.

Basic idea:

Sentiment = Total no. positive words − Total no. negative words

Use ‘sentiment dictionaries’ (lexicons) to assess a score (positive/negative) or
emotion to each term;

In tidytext: AFINN, bing, nrc;

There are also domain specific sentiment lexicons, for example the Loughran
and McDonald dictionary of financial sentiment terms;

More advanced methods: use classification to predict sentiment from text
(e.g. tf-idf).

·

·

·

·

41/54

Sentiment analysis - AFINN

AFINN lexicon (Finn Årup Nielsen):

assigns words with a score that runs
between -5 and 5, with negative
scores indicating negative sentiment
and positive scores indicating positive
sentiment

terms manually labelled for valence
by Finn Årup Nielsen between 2009
and 2011.

Specifically created for sentiment
analysis of microblogs such as Twitter

·

·

·

get_sentiments("afinn")

A tibble: 2,477 x 2
word value
<chr> <dbl>
1 abandon -2
2 abandoned -2
3 abandons -2
4 abducted -2
5 abduction -2
6 abductions -2
7 abhor -3
8 abhorred -3
9 abhorrent -3
10 abhors -3
... with 2,467 more rows

42/54

Sentiment analysis - bing

bing lexicon (Bing Liu and collaborators):

categorizes words into positive and
negative categories

Developed for mining and
summarizing customer reviews

First, adjective words were identified
using a natural language processing
method. Second, for each opinion
word, semantic orientation was
determined

·

·

·

A tibble: 6,786 x 2
word sentiment
<chr> <chr>
1 2-faces negative
2 abnormal negative
3 abolish negative
4 abominable negative
5 abominably negative
6 abominate negative
7 abomination negative
8 abort negative
9 aborted negative
10 aborts negative
... with 6,776 more rows

43/54

Sentiment analysis - nrc

nrc lexicon (Saif Mohammad and Peter Turney):

categorizes words into categories of
positive, negative, anger, anticipation,
disgust, fear, joy, sadness, surprise,
and trust

annotations were manually done by
crowdsourcing

·

·

A tibble: 13,901 x 2
word sentiment
<chr> <chr>
1 abacus trust
2 abandon fear
3 abandon negative
4 abandon sadness
5 abandoned anger
6 abandoned fear
7 abandoned negative
8 abandoned sadness
9 abandonment anger
10 abandonment fear
... with 13,891 more rows

44/54

Most common joy words in Harry
Potter

Most common fear words in Harry
Potter

Example NRC

A tibble: 440 x 2
word n
<chr> <int>
1 good 1065
2 found 614
3 ministry 576
4 feeling 391
5 magical 380
6 white 331
7 green 294
8 mother 284
9 smile 244
10 hope 234
... with 430 more rows

A tibble: 888 x 2
word n
<chr> <int>
1 death 757
2 feeling 391
3 fire 388
4 crouch 297
5 shaking 277
6 scar 276
7 mad 269
8 kill 267
9 elf 259
10 watch 256
... with 878 more rows

45/54

Example AFINN

Plot of novel four to six changes towards a negative sentiment towards the end,
while the seventh novel has a quite negative sentiment overall.

46/54

Example bing

47/54

Top words contributing to a positive sentiment

48/54

Top words contributing to a negative sentiment

49/54

Sentiment analysis

Hurdles:

Consider the sentence ‘I am not happy’. How would this be scored using
sentiment analysis as presented?

Sentiment analysis is language and dictionary dependent. If we would want to
label a Dutch text, we are dependent on the availability of a Dutch sentiment
lexicon, or have to create one ourselves

Size: one sentence or small paragraph (like tweets or customer reviews) often
have a clear sementic orientation. Long texts often contain positive and
negative sentiments, which average out to about zero. Hence, more suited for
short texts

·

When only investigating one word at the time, qualifiers before a word are
not taken into consideration

-

·

·

50/54

Word embeddings: basic idea

Source: https://ruder.io/secret-word2vec/

51/54

https://ruder.io/secret-word2vec/

Word embeddings: change in meaning over time

Source: Hamilton et al. (2016) http://doi.org/10.18653/v1/P16-1141

52/54

http://doi.org/10.18653/v1/P16-1141

Conclusion

The basic problem of text mining is that text is not a neat data set

The solution to this problem is preprocessing and representation

 preprocessing & representation determine outcome and its usefulness!

Harry Potter example:

Often these very simple choices give a very reasonable baseline,

surprising amount of insight, even though computers don’t know language,
but

Many other choices possible… it matters a lot plenty left to learn!

·

·

· →

·

Preprocessing: lowercasing, stopword removal, (what else?)

Representation: tf-idf bag-of-words

-

-

·

·

· →

53/54

	text-mining-1.pdf
	textmining.pdf

