Data Wrangling and Data Analysis Unsupervised learning: Model-based clustering

Daniel Oberski & Erik-Jan van Kesteren

Department of Methodology & Statistics

Utrecht University

This week

- Day 1: Clustering #2: Model-based clustering
- Day 2: Text mining #1
- Day 3: Text mining #2

Reading materials about clustering (this week & nex

- Selected paragraphs from Introduction to Statistical Learning (ISLR) §12.1 and 12.4
- "Mixture models: latent profile and latent class analysis" [Oberski, 2016] §1, §2

http://daob.nl/wp-content/papercitedata/pdf/oberski2016mixturemodels.pdf **Springer Texts in Statistics**

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning with Applications in R

mannppheatonsi

Second Edition

Optional, much more in-depth material

Clustering strategy and method selection (ch. 31), <u>https://arxiv.org/pdf/1503.02059.pdf</u>

Handbook of Cluster Analysis Hennig et al. (2016)

Model-based Clustering and Classification for Data Science Bouveyron et al. (2018) Chapman & Hall/CRC Handbooks of Modern Statistical Methods

Handbook of Cluster Analysis

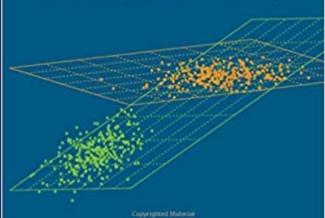
Edited by Christian Hennig Marina Meila Fionn Murtagh Roberto Rocci

CRC Press Tetra Line Const Construction Modernial Construction Modernial Cambridge Series in Statistical and Probabilistic Mathematics

Model-based Clustering and Classification for Data Science

With Applications in R

Charles Bouveyron, Gilles Celeux, T. Brendan Murphy and Adrian E. Raftery

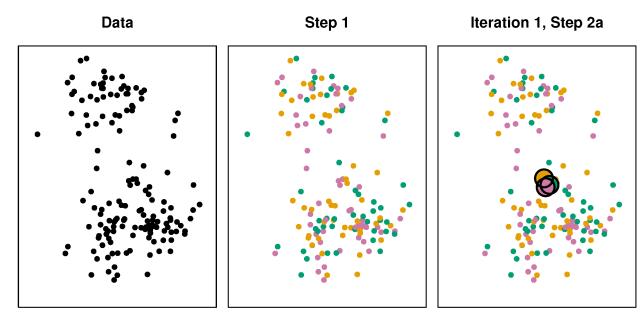


K-means again

1. Assign examples to K clusters

2.

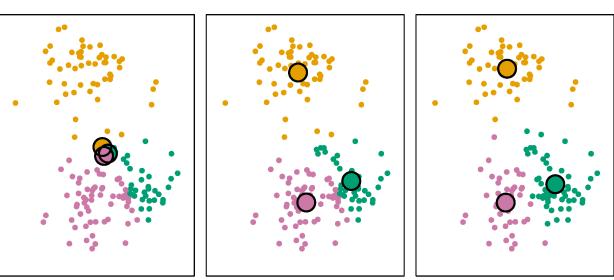
- a.Calculate K cluster
 centroids;
- b.Assign examples to cluster
 with closest centroid;
- 3. If assignments changed, back to step 2a; else stop.



Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results



K-means again

- K-means is based on a **rule**
- Why this rule and not some other rule?
- What kind of data does the rule work well for?
- In what situations would the rule fail?
- What happens if we want to change the rule?

All difficult to answer by staring at the algorithm.

"I propose we hire some new management consultants to reverse-engineer the previous consultants' re-engineering plan."

Steps:

- 1. Pretend we believe in some *statistical model* that describes data as belonging to unobserved ("latent") groups;
- 2. Estimate ("train") this model using the data.
- The rule follows from the model!
- Instead of worrying about *algorithm*, we worry about *model*.
- Questions are easy to answer.

- Assumptions about the clusters are explicit, not implicit.
- We will look at the most commonly used family of models,

Gaussian mixture models (GMMs):

- Data within each cluster (multivariate) normally distributed.
- Parameters can be either the same or different across groups:
 - Volume (size of the clusters in data space);
 - Shape (circle or ellipse);
 - Orientation (the angle of the ellipse).

Another major advantage:

- For each observation, get a posterior probability of belonging to each cluster;
- Reflects that cluster membership is uncertain;
- Cluster assignment can be done based on the highest probability cluster for each observation.

Specific examples of model-based clustering:

- Gaussian mixture models
- Latent profile analysis
- Latent class analysis (categorical observations)
- Latent Dirichlet allocation

Gaussian mixture modeling

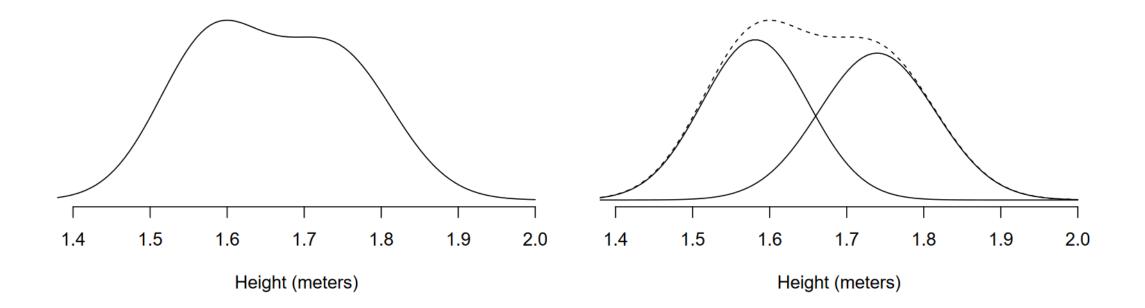


Fig. 1 Peoples' height. Left: observed distribution. Right: men and women separate, with the total shown as a dotted line.

• Statistical model + assumptions defines a likelihood

 $p(\text{data} | \text{parameters}) = p(y | \theta)$

- Maximum likelihood estimation: find the parameters θ that make it most likely to observe the data we actually observed, y
- The above procedure automatically gives algorithm for computing clusters from data, given the model.

Likelihood (*density*) for height data: $p(\text{height} \mid \theta) =$ $Pr(man) \cdot Normal(\mu_{man}, \sigma_{man}) +$ $Pr(woman) \cdot Normal(\mu_{woman}, \sigma_{woman})$ Or, more concise notation: $p(\text{height} \mid \theta) =$ π_1^X Normal(μ_1, σ_1) + $(1 - \pi_1^X)$ Normal (μ_2, σ_2) 1.5 1.6 1.4 1.7 1.8 1.9 2.0

Height (meters)

Gaussian mixture model **parameters**:

- π_1^X determines the relative cluster sizes
 - Proportion of observations to be expected in each cluster
- μ_1 and μ_2 determine the locations of the clusters
 - Like centroids in K-means clustering
- σ_1 and σ_2 determine the volume of the clusters
 - how large / spread out the are clusters are in data space

Together, these 5 unknown parameters describe our model of how the data is generated.

• If we knew in advance who is a man and who is a woman, it would have been easy to find the estimates for μ and σ :

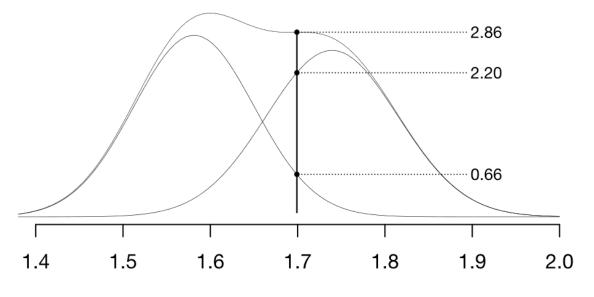
$$\hat{\mu}_1 = \frac{\sum_{i=1}^{N_1} \text{height}_i}{N_1}, \qquad \hat{\sigma}_1 = \sqrt{\frac{\sum_{i=1}^{N_1} (\text{height}_i - \hat{\mu}_1)^2}{N_1}}$$

(and same for $\hat{\mu}_2$ and $\hat{\sigma}_2$.)

But we don't know this!

-> Assignments need to be estimated too.

- Solution: Figure out the posterior probability of being a man/woman, given the current estimates of the means and sds
- If we know cluster locations and shapes, how likely is it that a 1.7m person is a man or a woman?

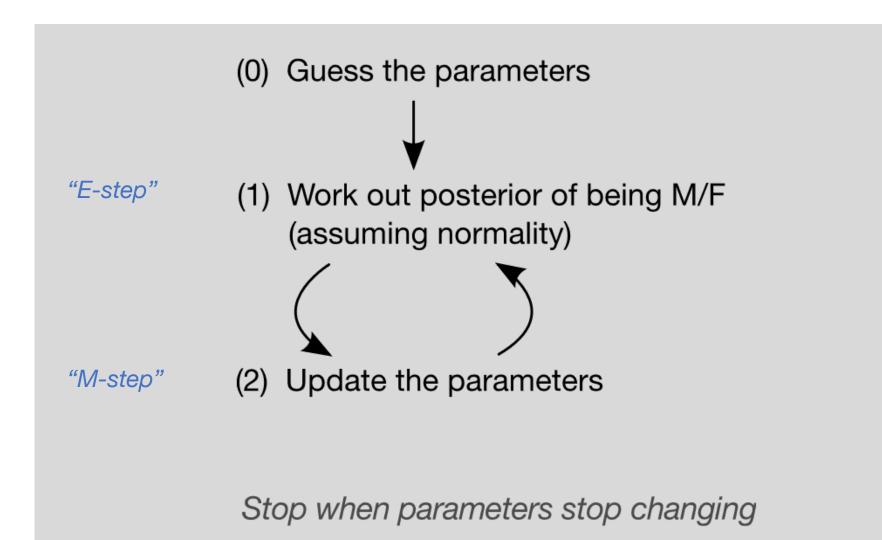


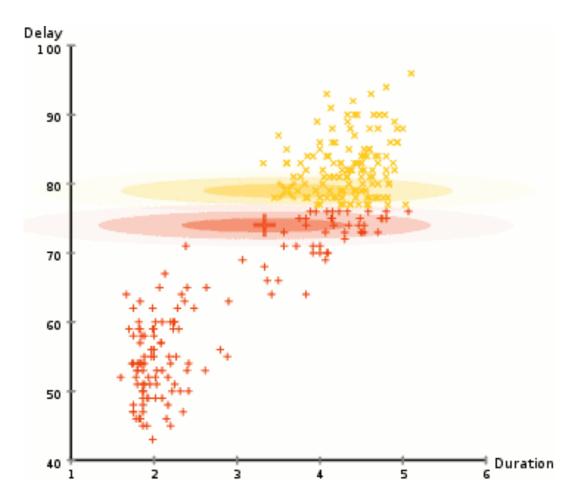
 $\pi_{man}^X = \frac{2.20}{2.86} \approx 0.77$

Height (meters)

- Now we have some class assignments (probabilities);
- So we can go back to the parameters and update them using our easy rule (M-step)
- Then, we can compute new posterior probabilities (E-step)

Does it remind you of something...?



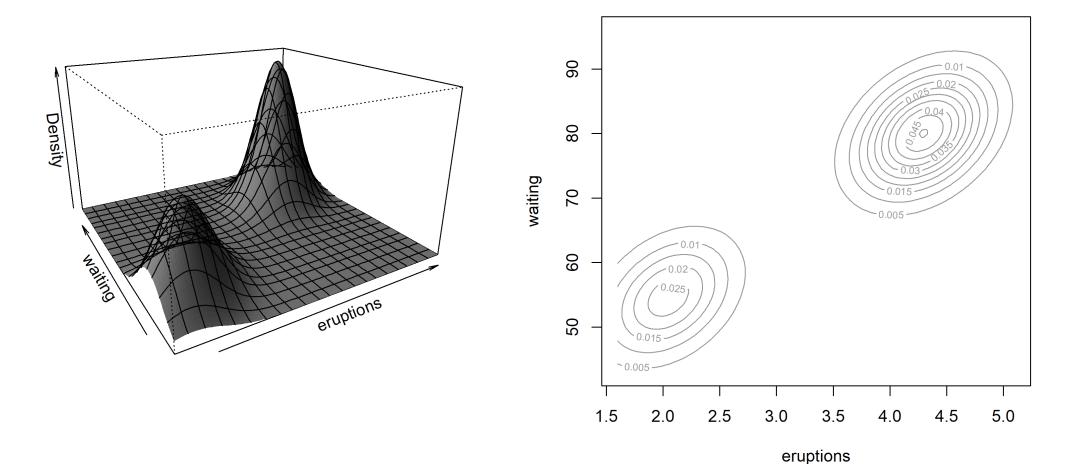


Multivariate model-based clustering

- With 2 observed features:
 - mean becomes a vector of 2 means
 - standard deviation turns into a 2x2 variance-covariance matrix determining the shape of the cluster
- So we have multiple within-cluster parameters:
 - Two means
 - Two variances, one for each observed variable
 - A single covariance among the features
- Together, the 11 parameters define the likelihood in bivariate space, which from the top looks like ellipses

Multivariate model-based clustering

 $p(\mathbf{y}|\boldsymbol{\theta}) = \pi_1^X MVN(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + (1 - \pi_1^X)MVN(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$



Number of parameters in a (multivariate) Gaussian mixture model

The number of parameters in a multivariate mixture model is:

- (the π_k^X) The number of components (classes), minus one, i.e. K 1
- (the μ_k), i.e. K · p (where p is the number of variables)
- (the Σ_k), i.e.
 - $K \cdot p$ variances,
 - (or p variances when variances equal over classes)
 - $K \cdot p (p-1)/2$ covariances
 - (or p(p-1)/2 when covariances equal over classes)
 - (or 0 when variables are uncorrelated, spherical clusters)

Number of parameters

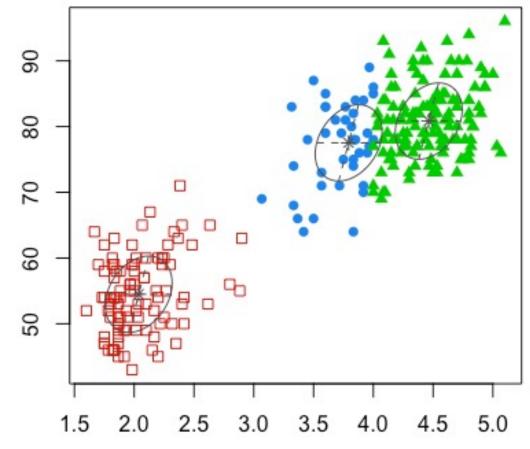
1

A)

$$m = (K - 1) + Kp + Kp + K\frac{p(p - 1)}{2}$$

For example:

- K = 3
- p = 2
- Ellipsoidal (correlated within cluster)
- But: equal variances and covariance $m = (K - 1) + Kp + p + \frac{p(p - 1)}{2}$ $= 2 + 3 \times 2 + 2 + 1$ = 11



Multivariate model-based clustering

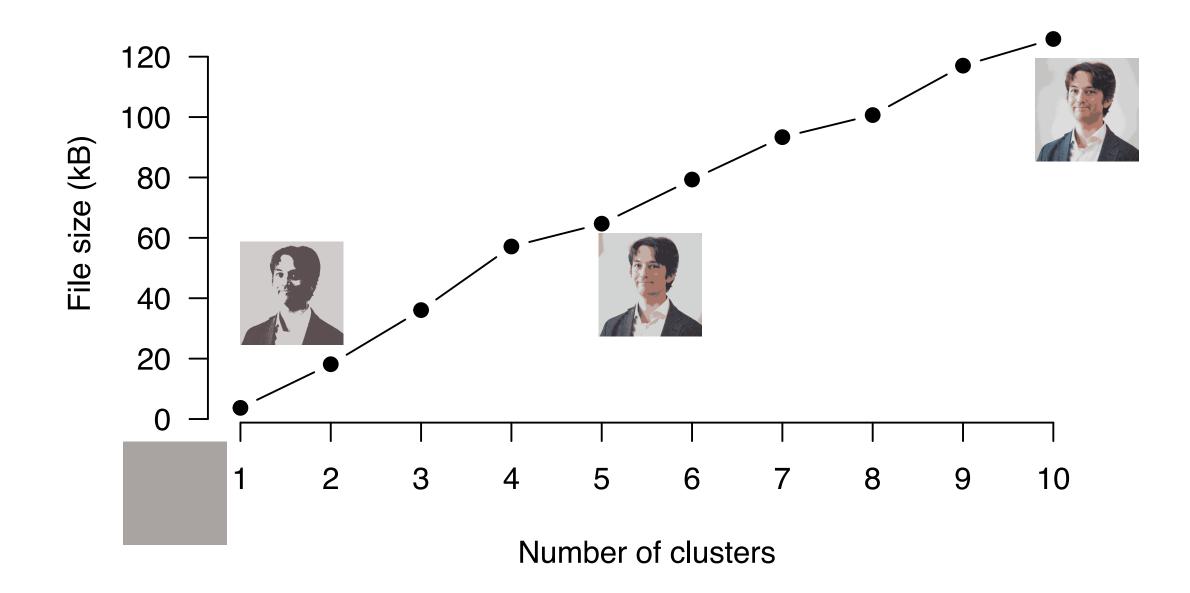
- Cluster shape parameters (the variance-covariance matrix) can be constrained to be equal across clusters
- Can also be different across clusters
- More flexible, complex model
- Think: bias-variance tradeoff

How to evaluate clustering results

- 1. Use of external information
- 2. Visual exploration
- 3. Stability assessment / sensitivity analysis
- 4. Internal validation indexes
- 5. Testing for clustering structure

Much more info & helpful advice: Clustering strategy & method selection (ch 31 of Handbook of clustering), <u>https://arxiv.org/pdf/1503.02059.pdf</u>

File size increases with number clusters



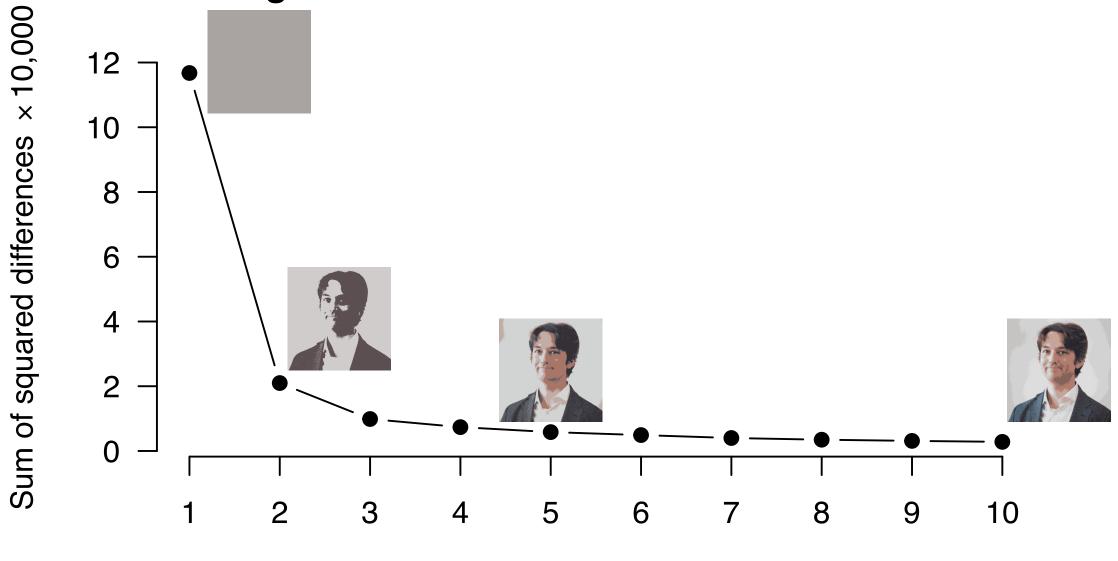
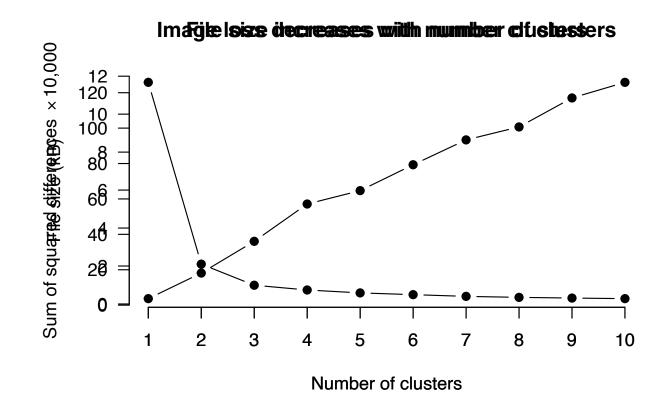


Image loss decreases with number of clusters

Number of clusters



- More clusters gives better "fit" in terms of reconstruction of the image (compression is less "lossy")
- More clusters gives bigger file size (solution is more complex, takes more bytes to store)
- So the model loss and model complexity trade off against each other
- This is a common theme in (unsupervised) machine learning and you should remember this for model-based clustering lecture

Model fit

- The likelihood says how well the model fits to the data
- It forms the basis of information criteria (lower is better)
 - Can be used to compare different clustering models and pick the best one

$$BIC = -2 \cdot \log(\ell) + m \cdot \log(n)$$

- ℓ : Likelihood, $p(\text{data} | \theta)$
- $-2 \cdot \log(\ell)$: "Deviance"
- m : Number of parameters
- *n* : Number of observations/examples

Model fit

• Tradeoff between fit and complexity

$$\frac{-2 \cdot \log(\ell)}{q} + \frac{m \cdot \log(n)}{q}$$

"Reconstruction loss" \approx "File size"*

- Think: bias and variance tradeoff
 - Variance also has to do with "clustering stability"
- Better fit and lower complexity = better cluster solution

More model fit criteria

- BIC: "Schwarz/Bayesian information criterion"
- AIC: "Another/Akaike information criterion" (same as BIC but penalty is m)
- AIC3: The same as AIC but penalty is $\frac{3}{2}m$
- ICL: "Integrated information criterion" (Biernacki et al. 2000)

(Same as BIC but reconstruction loss includes the assigned clusters)

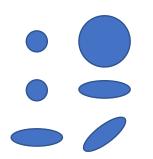
- (Others based on):
 - *Minimum description length (MDL)*
 - Bayesian marginal likelihood

Model-based clustering in R

- mclust implements multivariate model-based clustering
- Provides an easy interface to fit several parameterizations
- Model comparison with BIC
- Plotting functionality
 - > library(mclust)

Model-based clustering in R

- Mclust uses an identifier for each possible parametrization :
- E for equal, V for variable, I for identity matrix:
 - Volume (size of the clusters in data space):
 - Shape (circle or ellipse)
 - Orientation (the angle of the ellipse)

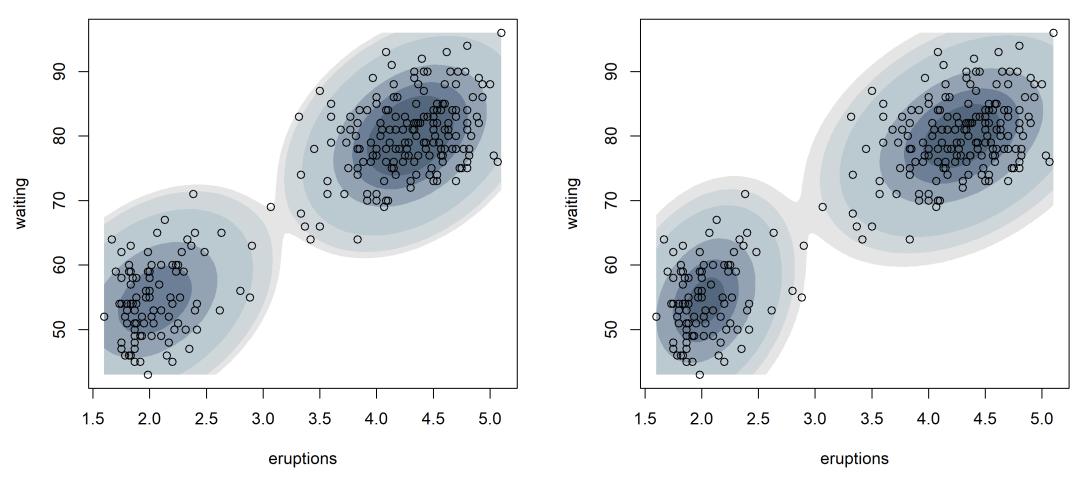


- E.g. an "EEE" model has equal volume, shape and orientation
- A VVV model has variable volume, shape, and orientation
- A VVE model has variable volume and shape but equal orientation

Model-based clustering in R:EEEvs.VVV

Equal volume, shape, orientation

Variable volume, shape, orientation



TOP SECRET SLIDE

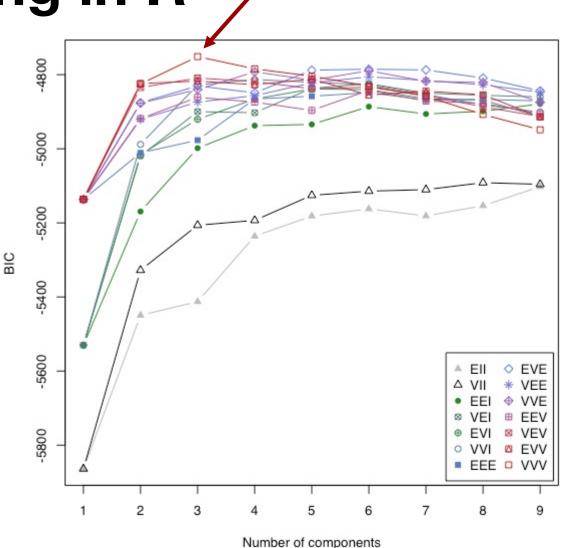
K-MEANS IS A GMM WITH THE FOLLOWING MODEL:

- All prior class proportions are 1/K;
- **EII** model: equal volume, only circles;
- All posteriors are either 0 or 1 ("classification likelihood").

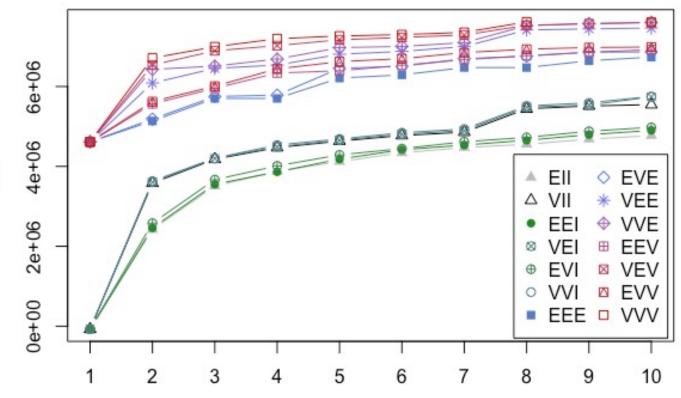
Model-based clustering in R

VVV, 3 clusters

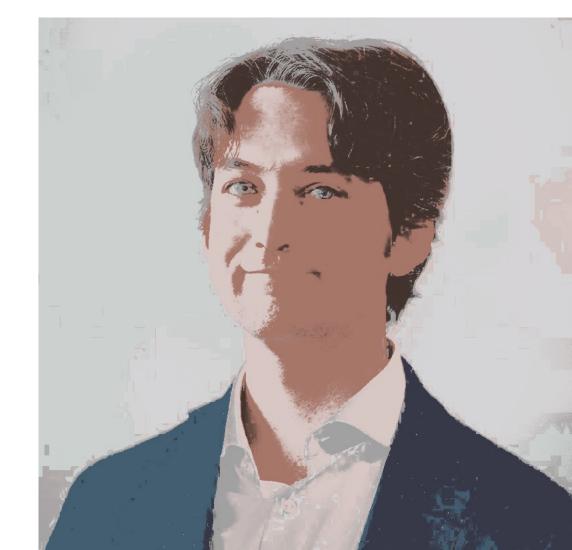
- How mclust optimizes hyperparameters:
 - Fit all the models with up to 9 clusters (or more, your choice!)
 - Compute the BIC (or ICL) of each model
 - Choose the model with the best BIC
- R assignment: using mclust



Model selection using BIC for image example



Number of components



BIC

> fit mc <- Mclust(im ar, G = 1:10) fitting ... 100% > summary(fit_mc) ______ Gaussian finite mixture model fitted by EM algorithm Mclust VVV (ellipsoidal, varying volume, shape, and orientation) model with 8 components: log-likelihood n df BIC ICL 3808542 640000 **79** 7616028 7530927 Clustering table: 1 2 3 4 5 6 7 8 151032 48661 155542 34602 82621 49494 41665 76383

Merging components to get clusters

- GMM obviously has trouble with clusters that are not ellipses
- Secret weapon: merging

Powerful idea:

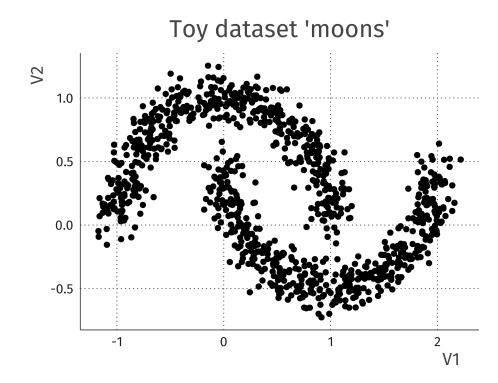
- Start out with the usual Gaussian mixture solution;
- merge "similar" components to create non-Gaussian clusters.

Note: we're distinguishing "components" from "clusters" now.

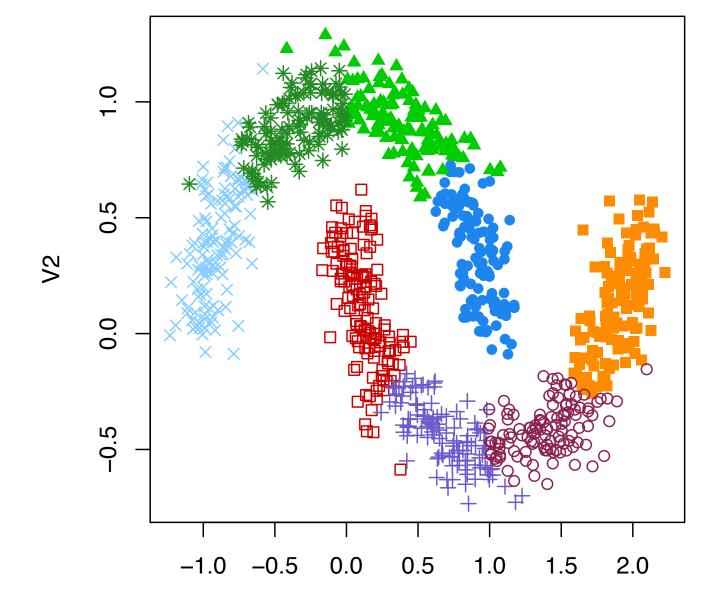
Merging components to get clusters

library(mclust)

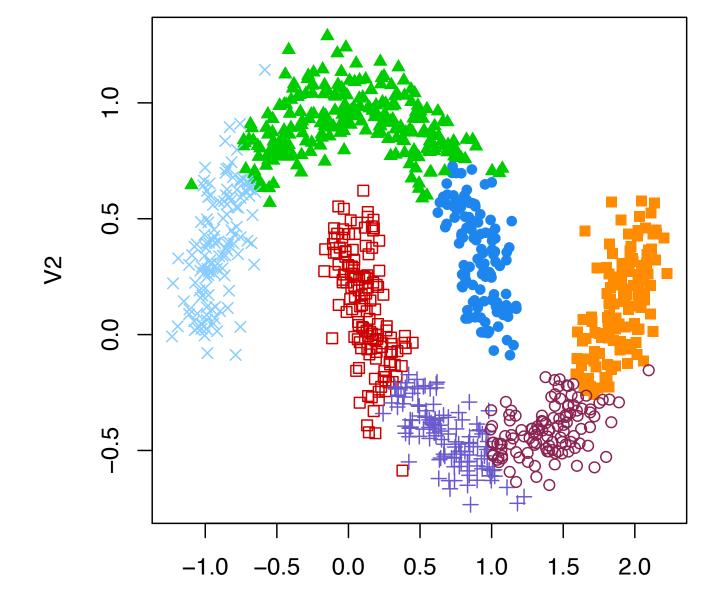
output <- clustCombi(data = x)
plot(output)</pre>



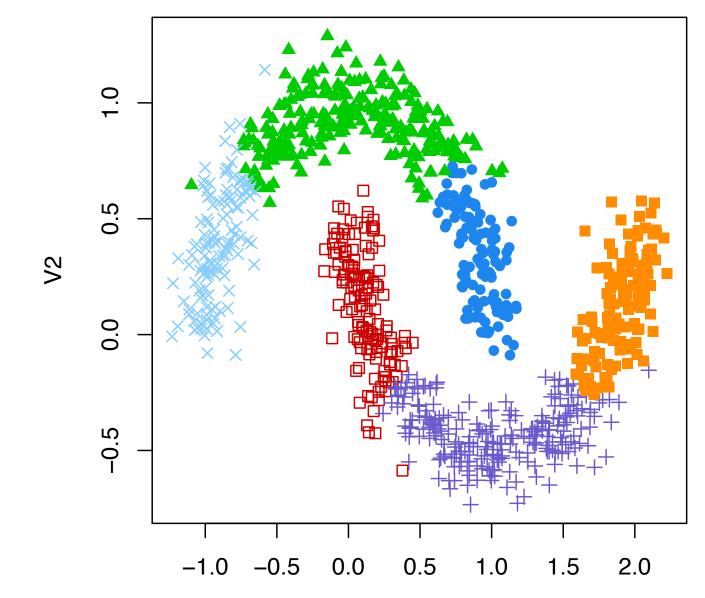
BIC solution (8 clusters)



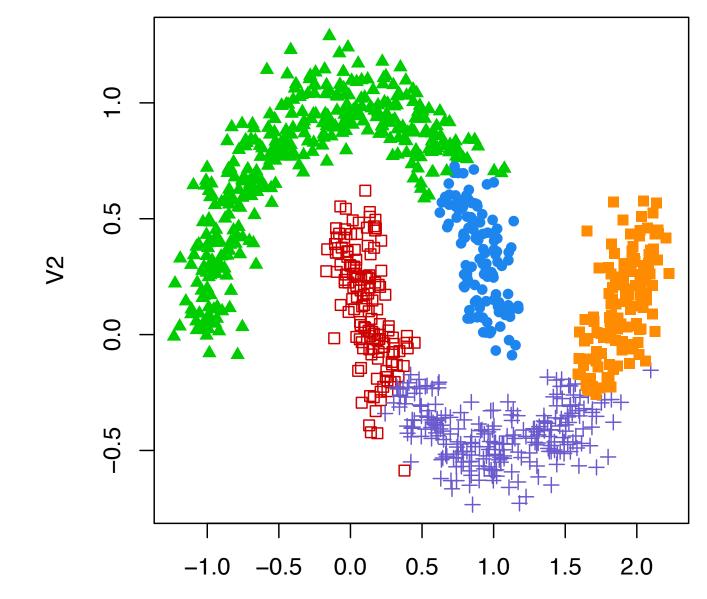
Combined solution with 7 clusters



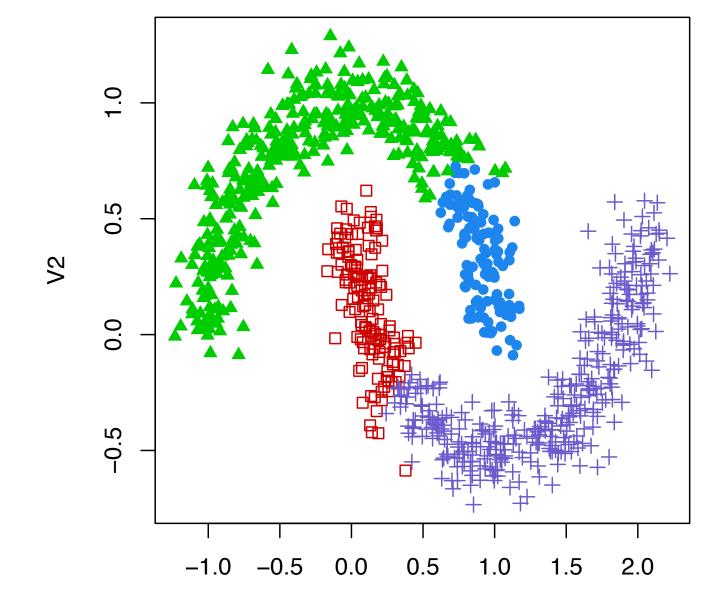
Combined solution with 6 clusters



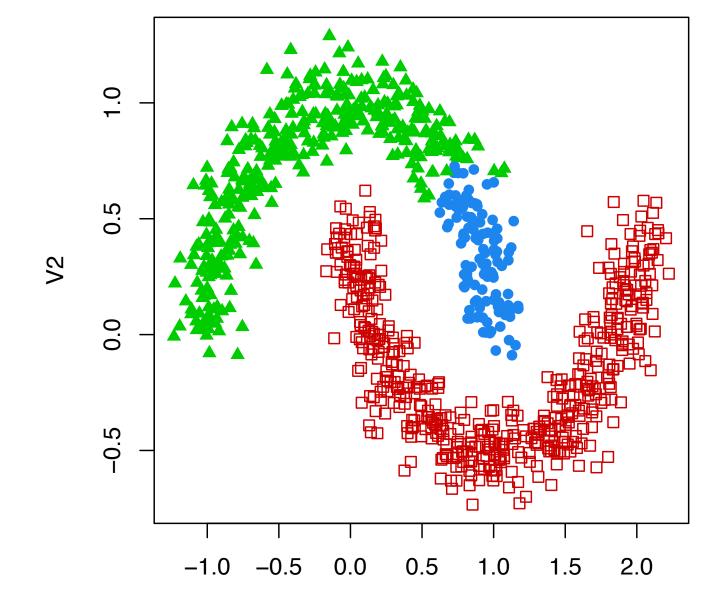
Combined solution with 5 clusters



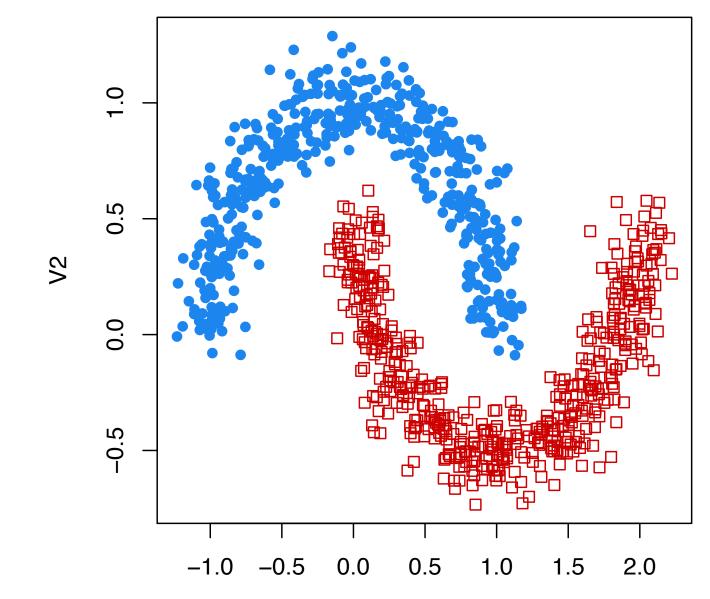
Combined solution with 4 clusters



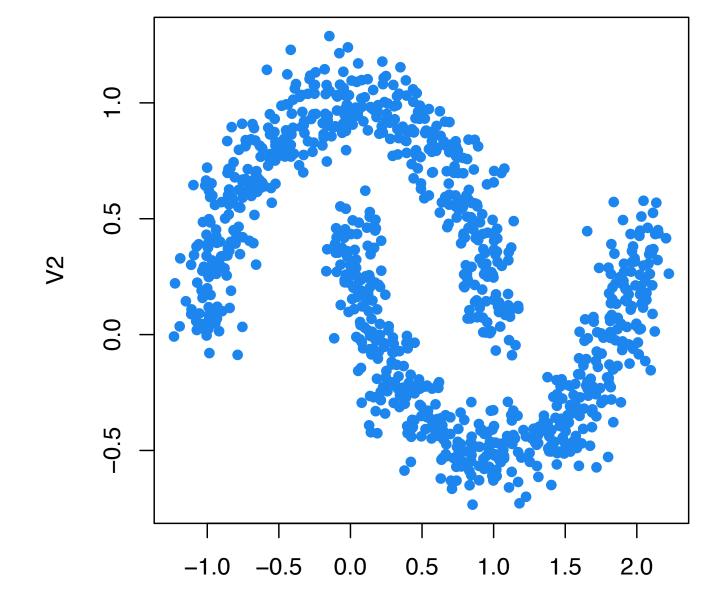
Combined solution with 3 clusters



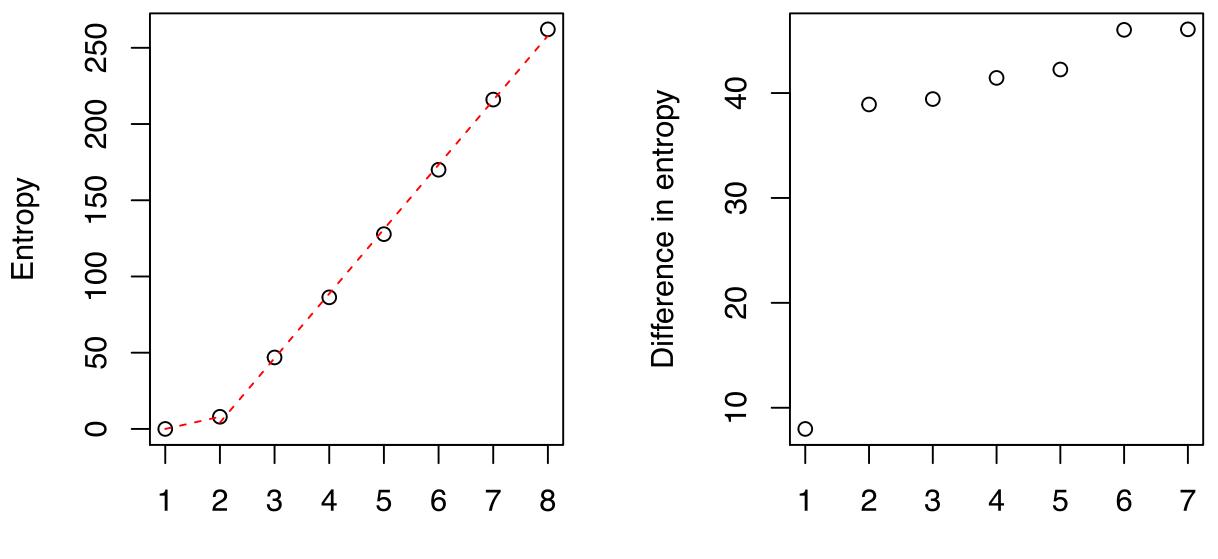
Combined solution with 2 clusters



Combined solution with 1 clusters



Entropy plot



Number of clusters

Number of clusters

Clustering other types of things

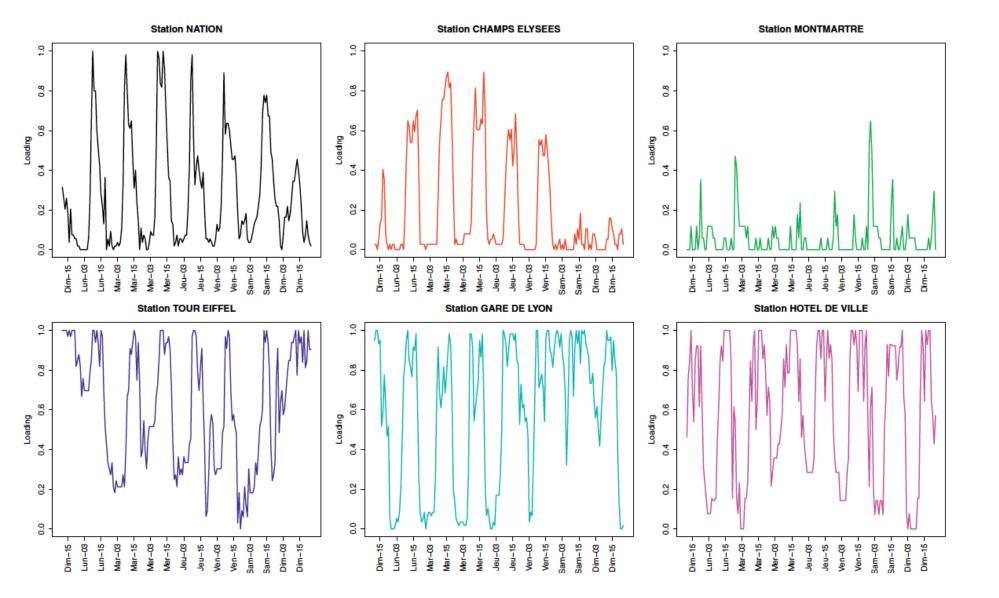
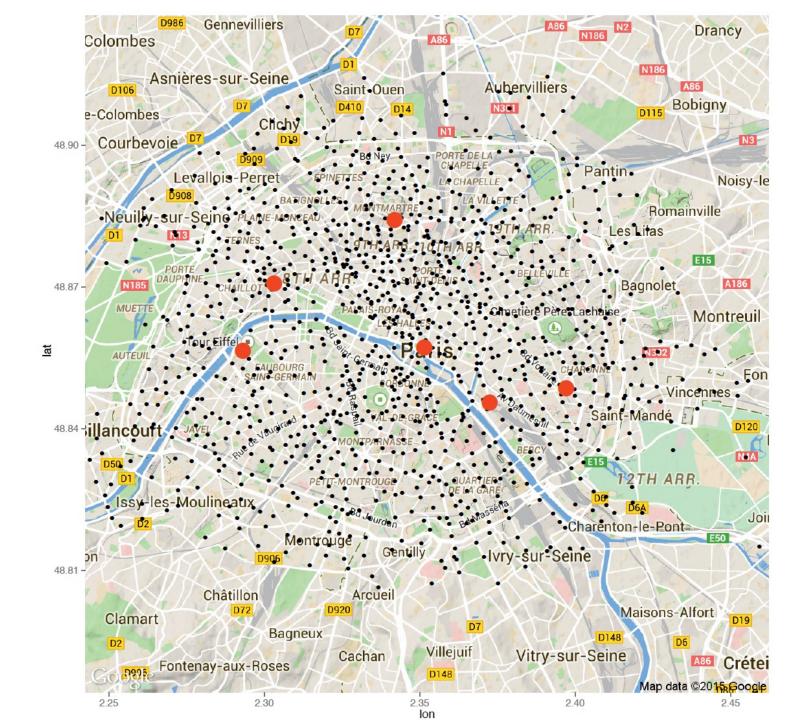


Figure 12.1 Loading profiles of some Vélib stations. A loading value equal to 1 means that the station is full of bikes whereas a value equal to 0 indicates a station without available bikes.

Bouveyron et al. 2018

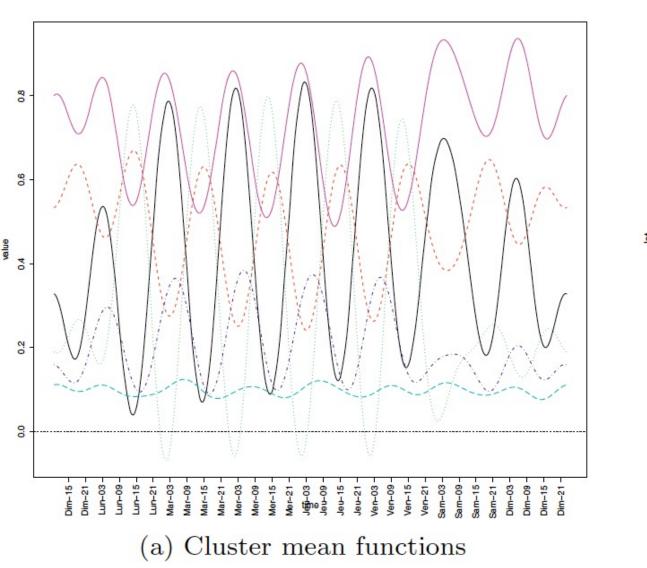


"functional data" clustering in R

Loading libraries and data library(funFEM) data(velib)

Transformation of the raw data as curves basis = create.fourier.basis(c(0, 181) , nbasis =25) fdobj = smooth.basis (1:181 ,t(velib\$data),basis)\$fd

Clustering with funFEM
res = funFEM(fdobj ,K=6)



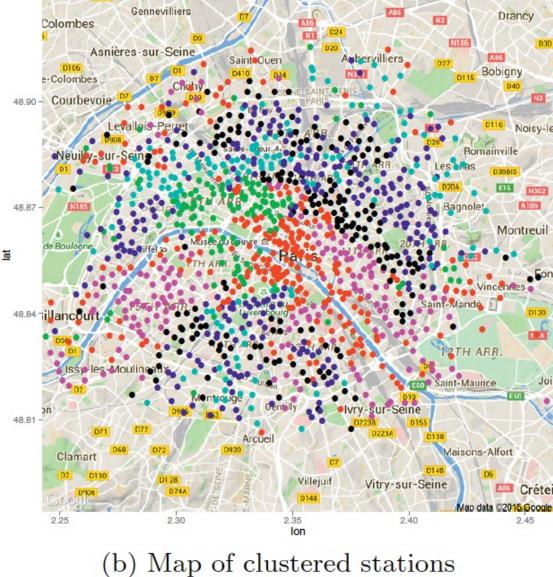


Figure 12.6 Cluster mean functions and map of clustered stations by funFEM on the Vélib data set.

Conclusion

Model-based clustering:

- 1. Pretend we believe in a model;
- 2. Estimate the model.
- Algorithm is defined by the model;
- Easy to think about assumptions;
- Flexible in using other data types;
- Common model: GMM (implementation mclust in R);
- Secret weapon: component merging.