
Daniel Oberski & Erik-Jan van Kesteren
Department of Methodology & Statistics

Utrecht University

Data Wrangling and Data Analysis
Unsupervised learning:
Model-based clustering



This week
• Day 1:  Clustering #2: Model-based clustering
• Day 2: Text mining #1
• Day 3: Text mining #2



Reading materials about 
clustering (this week & next)
• Selected paragraphs from 

Introduction to Statistical 
Learning (ISLR) §12.1 and 12.4

• “Mixture models: latent profile and 
latent class analysis” [Oberski, 2016]
§1, §2
http://daob.nl/wp-content/papercite-
data/pdf/oberski2016mixturemodels.pdf

http://daob.nl/wp-content/papercite-data/pdf/oberski2016mixturemodels.pdf


Optional, much more in-depth material
Clustering strategy and method selection (ch. 31), 
https://arxiv.org/pdf/1503.02059.pdf
Handbook of Cluster Analysis 

Hennig et al. (2016)

Model-based Clustering and 
Classification for Data Science
Bouveyron et al. (2018)

https://arxiv.org/pdf/1503.02059.pdf


Model-based clustering



K-means again
1. Assign examples to 𝐾 clusters

2.
a. Calculate K cluster 

centroids;
b. Assign examples to cluster 

with closest centroid;

3. If assignments changed, back 
to step 2a; else stop.



K-means again
• K-means is based on a rule
•Why this rule and not some other rule?
•What kind of data does the rule work well for?
• In what situations would the rule fail?
•What happens if we want to change the rule? 

All difficult to answer by staring at the algorithm. 





Model-based clustering
Steps:
1. Pretend we believe in some statistical model that describes 

data as belonging to unobserved (“latent”) groups;
2. Estimate (“train”) this model using the data.

• The rule follows from the model!
• Instead of worrying about algorithm, we worry about model.
• Questions are easy to answer. 



Model-based clustering
• Assumptions about the clusters are explicit, not implicit. 
• We will look at the most commonly used family of models,

Gaussian mixture models (GMMs):
• Data within each cluster (multivariate) normally distributed.
• Parameters can be either the same or different across groups:
• Volume (size of the clusters in data space);
• Shape (circle or ellipse);
• Orientation (the angle of the ellipse).



Model-based clustering
Another major advantage:

• For each observation, get a posterior probability of 
belonging to each cluster;
• Reflects that cluster membership is uncertain;
• Cluster assignment can be done based on the highest 

probability cluster for each observation.



Model-based clustering

Specific examples of model-based clustering:

• Gaussian mixture models
• Latent profile analysis
• Latent class analysis (categorical observations)
• Latent Dirichlet allocation



Gaussian mixture modeling



Model-based clustering
• Statistical model + assumptions defines a likelihood

𝑝 data parameters) = 𝑝 𝑦 𝜃)

• Maximum likelihood estimation: find the parameters 𝜃 that 
make it most likely to observe the data we actually observed, 𝑦

• The above procedure automatically gives algorithm for 
computing clusters from data, given the model.



Model-based clustering
Likelihood (density) for height data:
𝑝 height 𝜃) =

Pr man 3Normal 𝜇man, 𝜎man +
Pr(woman)3Normal(𝜇woman, 𝜎woman)

Or, more concise notation:
𝑝 height 𝜃) =

𝜋!"Normal 𝜇!, 𝜎! +
(1 − 𝜋!")Normal 𝜇#, 𝜎#



Model-based clustering
Gaussian mixture model parameters:
• 𝜋!" determines the relative cluster sizes 
• Proportion of observations to be expected in each cluster

• 𝜇! and 𝜇# determine the locations of the clusters 
• Like centroids in K-means clustering

• 𝜎! and 𝜎# determine the volume of the clusters 
• how large / spread out the are clusters are in data space

Together, these 5 unknown parameters describe our model of 
how the data is generated.



Estimation: the EM algorithm
• If we knew in advance who is a man and who is a woman, it 

would have been easy to find the estimates for 𝜇 and 𝜎:

�̂�" =
∑#$"
%! height#

𝑁"
, '𝜎" =

∑#$"
%! height# − �̂�" &

𝑁"

(and same for @𝜇# and @𝜎#.)
• But we don’t know this! 
-> Assignments need to be estimated too.



Estimation: the EM algorithm
• Solution: Figure out the posterior probability of being a 

man/woman, given the current estimates of the means and sds
• If we know cluster locations and shapes, how likely is it that a 

1.7m person is a man or a woman?

𝜋$%&" = #.#(
#.)*

≈ 0.77



Estimation: the EM algorithm
• Now we have some class assignments (probabilities);
• So we can go back to the parameters and update them using 

our easy rule (M-step)
• Then, we can compute new posterior probabilities (E-step)

Does it remind you of something…?



Estimation: the EM algorithm

“E-step”

“M-step”



Estimation: the EM algorithm

By Chire - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20494862



Multivariate model-based clustering
• With 2 observed features:
• mean becomes a vector of 2 means
• standard deviation turns into a 2x2 variance-covariance matrix 

determining the shape of the cluster
• So we have multiple within-cluster parameters:
• Two means
• Two variances, one for each observed variable
• A single covariance among the features

• Together, the 11 parameters define the likelihood in bivariate 
space, which from the top looks like ellipses



Multivariate model-based clustering
𝑝 𝒚 𝜃) = 𝜋!"𝑀𝑉𝑁 𝝁𝟏, 𝚺𝟏 + (1 − 𝜋!")𝑀𝑉𝑁 𝝁𝟐, 𝚺𝟐



Number of parameters in a 
(multivariate) Gaussian mixture model
The number of parameters in a multivariate mixture model is:
• (the 𝜋!") The number of components (classes), minus one, 

i.e. 𝐾 − 1
• (the 𝝁!), i.e. K ' 𝑝 (where 𝑝 is the number of variables)
• (the 𝚺𝒌), i.e.
• 𝐾 ' 𝑝 variances, 
• (or 𝑝 variances when variances equal over classes)

• 𝐾 ' 𝑝 (𝑝 − 1)/2 covariances
• (or 𝑝 (𝑝 − 1)/2 when covariances equal over classes)
• (or 0 when variables are uncorrelated, spherical clusters)



𝑚 = 𝐾 − 1 + 𝐾𝑝 + 𝐾𝑝 + 𝐾
𝑝 𝑝 − 1

2
For example: 
• 𝐾 = 3
• 𝑝 = 2
• Ellipsoidal (correlated within cluster)
• But: equal variances and covariance
𝑚 = 𝐾 − 1 + 𝐾𝑝 + 𝑝 +

𝑝 𝑝 − 1
2

= 2 + 3×2 + 2 + 1
= 11

Number of parameters



Multivariate model-based clustering
• Cluster shape parameters (the variance-covariance matrix) 

can be constrained to be equal across clusters
• Can also be different across clusters
•More flexible, complex model
• Think: bias-variance tradeoff



How to evaluate clustering results
1. Use of external information
2. Visual exploration
3. Stability assessment / sensitivity analysis
4. Internal validation indexes
5. Testing for clustering structure

Much more info & helpful advice: Clustering strategy & method selection (ch 31 of 
Handbook of clustering), https://arxiv.org/pdf/1503.02059.pdf

https://arxiv.org/pdf/1503.02059.pdf


File size increases with number clusters
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Image loss decreases with number of clusters
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File size increases with number clusters
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• More clusters gives better “fit” in terms of reconstruction of the image 
(compression is less “lossy”)

• More clusters gives bigger file size
(solution is more complex, takes more bytes to store)

• So the model loss and model complexity trade off against each other
• This is a common theme in (unsupervised) machine learning and you should 

remember this for model-based clustering lecture



Model fit
• The likelihood says how well the model fits to the data
• It forms the basis of information criteria (lower is better)
• Can be used to compare different clustering models and pick the best 

one

𝐵𝐼𝐶 = −2 ⋅ log ℓ + 𝑚 ⋅ log 𝑛

• ℓ : Likelihood, 𝑝 data 𝜃)
• −2 ⋅ log ℓ : “Deviance”
• 𝑚 : Number of parameters
• 𝑛 : Number of observations/examples



Model fit
• Tradeoff between fit and complexity

−2 ⋅ log ℓ + 𝑚 ⋅ log 𝑛

• Think: bias and variance tradeoff
• Variance also has to do with “clustering stability”

• Better fit and lower complexity = better cluster solution

“Reconstruction loss” ≈“File size”*

*Approximation for BIC, different choices possible



More model fit criteria
• BIC: “Schwarz/Bayesian information criterion”
• AIC: “Another/Akaike information criterion”

(same as BIC but penalty is 𝑚)
• AIC3: The same as AIC but penalty is &

'
𝑚

• ICL: “Integrated information criterion” (Biernacki et al. 2000)

(Same as BIC but reconstruction loss includes the assigned clusters)
• (Others based on):

• Minimum description length (MDL) 
• Bayesian marginal likelihood



Model-based clustering in R
• mclust implements multivariate model-based clustering
• Provides an easy interface to fit several parameterizations
• Model comparison with BIC
• Plotting functionality

> library(mclust)
__ ___________ __ _____________

/ |/ / ____/ / / / / / ___/_ __/
/ /|_/ / / / / / / / /\__ \ / /

/ / / / /___/ /___/ /_/ /___/ // / 
/_/ /_/\____/_____/\____//____//_/ version 5.4.6



Model-based clustering in R
• Mclust uses an identifier for each possible parametrization :
• E for equal, V for variable, I for identity matrix:

• Volume (size of the clusters in data space): 
• Shape (circle or ellipse)
• Orientation (the angle of the ellipse)

• E.g. an “EEE” model has equal volume, shape and orientation
• A VVV model has variable volume, shape, and orientation
• A VVE model has variable volume and shape but equal 

orientation



Model-based clustering in R: 
EEE vs. VVV



TOP SECRET SLIDE
K-MEANS IS A GMM WITH THE FOLLOWING MODEL:

• All prior class proportions are 1/K;
• EII model: equal volume, only circles;
• All posteriors are either 0 or 1 (“classification likelihood”).



Model-based clustering in R
• How mclust optimizes 

hyperparameters:
• Fit all the models with up to 9 

clusters (or more, your choice!)
• Compute the BIC (or ICL) of each 

model
• Choose the model with the best BIC

• R assignment: using mclust

VVV, 3 clusters



Model selection using BIC for image 
example



> fit_mc <- Mclust(im_ar, G = 1:10)
fitting ...
|========================================================| 100%

> summary(fit_mc)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm 
----------------------------------------------------
Mclust VVV (ellipsoidal, varying volume, shape, and orientation) 
model with 8 components: 

log-likelihood      n df     BIC     ICL
3808542 640000 79 7616028 7530927

Clustering table:
1      2      3      4      5      6      7      8 

151032  48661 155542  34602  82621  49494  41665  76383 



Merging components to get clusters

• GMM obviously has trouble with clusters that are not ellipses
• Secret weapon: merging

Powerful idea: 
• Start out with the usual Gaussian mixture solution;
• merge “similar” components to create non-Gaussian clusters.

Note: we’re distinguishing “components” from “clusters” now.



Merging components to get clusters

library(mclust)

output <- clustCombi(data = x)
plot(output)
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Clustering other types of things



Bouveyron et al. 2018





“functional data” clustering in R
# Loading libraries and data

library(funFEM)
data(velib)

# Transformation of the raw data as curves
basis = create.fourier.basis(c(0, 181) , nbasis =25)

fdobj = smooth.basis (1:181 ,t(velib$data),basis)$fd

# Clustering with funFEM
res = funFEM(fdobj ,K=6)





Conclusion
•Model-based clustering: 

1. Pretend we believe in a model;
2. Estimate the model.

• Algorithm is defined by the model;
• Easy to think about assumptions;
• Flexible in using other data types;
• Common model: GMM (implementation mclust in R);
• Secret weapon: component merging.


