Deep learning

Feed-forward and convolutional neural
networks for image recognition

Erik-Jan van Kesteren



Supervised machine learning

1. Regression (predicting continuous outcomes)

2. Model evaluation
3. Classification (predicting discrete outcomes)

4. Deep learning



Today

* Introduction to neural networks

* Feed-forward & deep neural networks
 Training / optimization

« Convolutional neural networks
 Battling the curse of dimensionality



Introduction



Why should we learn this?

State-of-the-art performance on various tasks
» Text prediction (your phone’s keyboard)
 Text mining (at the end of this course!)
 Forecasting
« Object recognition
« Sound recognition
« Spam filtering
* Image generation
* Style transfer
* Image denoising
« Compression (dimension reduction)
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“Hello world” of neural networks

* MNIST j- Ejl L'fl f- ‘T 2 "

e 3 43
* Handwritten digits

+ 28 * 28 pixels | 7 & &
« 60 000 training

images and 10 000 Cf] 5;; / 'J_[

testing images



So what is a neural network?



Neural networks

y=f&X)+ e

* Neural networks are a way to specify f(X)
* You can display f(X) graphically

* Let’s graphically represent lipear regression!

f(Xi) — ,Bpxpi

p=1



Linear regression as neural net

Graphical representation FXD=at Y By
p=1
* Parameters are arrows

« Arrows ending In a node
are summed together

* Intercept is not drawn




Linear regression as neural net

Neural network jargon FUD =B+ wyy
« Parameter = weight
* Intercept = bias




Single layer neural networks
y=fX)+ €

Specify a layer with K hidden units called A

K

fX)=PBo+ brAy

k=1
Where

P
Ay =hX)=g (WOk T z 1kaxp)
p:



Single layer neural networks

Input Hidden Output
L Laye L
Ay
N /
Ao
X \




Single layer neural networks

« What about the function g(:)?
* This is called the activation function

e A transformation of the linear combination of
predictors

P
he(X) =g (WOR T E 1kaxp>
p:



Activation functions

Linear: g(x) = x

ReLu: g(x) = max(0, ]

[

Sigmoid: g(x) = L

1+e™X

———____—___—_——___,,—”

» Rectified linear (ReLu) is
most popular nowadays

« Nonlinearity necessary!
Otherwise: collapse to
linear regression



Activation functions

We can go wider

« More hidden units -> more transformations of input
« Similar to basis functions, feature engineering

Universal function approximation theorem
Any “well-behaved” function can be represented by neural net
of sufficient width with nonlinear activation function



https://miro.medium.com/max/1400/1*YDS2pY--VzdsrmWPoBlIOw.gif



Single layer neural networks

Input Hidden Output
L Laye L
Ay
N /
Ao
X \




Let’s take it further



Feed-forward neural networks

We can go deeper
« More hidden layers after one another
« Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net
of sufficient depth with nonlinear activation function



Feed-forward neural networks

Input
layer

Hidden

fl(X)—> Yl

fg(X)—) Yg




Feed-forward neural networks

Feed-forward network -
architecture defined by:

 Number of layers

« Number of hidden units
In each layer

 Activation function for
each layer

e Activation function for
output layer




Prediction for MNIST

Each example has:

« 28%28 =784 input features
* Values between 0-255 (8 bit)
« Usually normalized to be 0-1
« 1=black, 0 = white, 0.5 = grey

* 10 outcome categories (0-9) Q_
« One-hot encoding for outcome
* (cool way to say dummy coding)
*1=0100000000 .‘f
«5=00000170000



Keras!

library(keras)

model dff <-
keras_model_sequential() %>%
layer_ flatten(input_shape = c(28, 28)) %>%
layer_dense(units = 256, activation = "relu") %>%
layer_dense(units = 128, activation = "relu") %>%
layer_dense(10, activation = "softmax")



Keras!

summary(model _dff)

Layer (type) Output Shape Param #
flatten (Flattem)  (none, 786 o
dense_1 (Dense) ~ (Nome, 256)  2009%@
dense_2 (Dense) ~ (Nome, 128) 328906
dense_3 (Dense) ~ (Nome, 10) 1290

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0



How to train the model



Training

* We need some way to measure how well the network does
« Parameters that make the network perform well are good!

- Remember ML estimation: finding & maximizing p(v|9)

- Remember OLS estimation: finding 8 minimizing ¥ (y —X[?)2
« Same for neural nets: we minimize some loss function L(0)



Loss function

» For continuous outcomes you can use squared error
L(O) = (f(X;;0) —v;)?

* For binary outcomes you can use binary cross-entropy

L(9) = —(y; log(f (X;;0)) + (1 — y) log(f (X;; 0)))



Loss function

« What do the parameters need to be in order to minimize loss?

« We don’t know this!
« But we might know the direction in which we need to move to
decrease the loss

e This direction is called the gradient

0
9(8) = Vo= == L(0)

* (Looks scary, but it's just a number for each parameter)



Gradient descent

Iteration: step of size 1 in the direction of the negative gradient
gU+1) — gU) —_ 3. g(g(j))

Let’s try it out with a simple example!
e L(O) =6%—0+0.25

e g(0) =26 -1

e 1 =0.25
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Stochastic gradient descent

e Instead of computing the gradients w.r.t. the entire
loss function, only use a random batch of data

- Take a step after each batch (e.g., 32 rows)

« If batch size =1, take a step after each example
« Common batch sizes: 32, 64, 128, 256, 512

* One look at the full data = 1 epoch



Stochastic gradient descent

 batch mode: where the batch size is equal to the total
dataset thus making the iteration and epoch values equal

- mini-batch mode: where the batch size is greater than
one but less than the total dataset size. Usually, a
number that can be divided into the total dataset size.

- stochastic mode: where the batch size is equal to one.
The gradient and the neural network parameters are
updated after each sample.

https://ai.stackexchange.com/questions/8560/how-do-i-choose-the-optimal-batch-size



Gradient computation

« But in neural networks, how do we compute gradients?
« We have functions of functions!
« Software like tensorflow / Keras / torch does this for you!

- Backpropagation: smart repeated use of the chain rule to compute
derivatives

dz dz dy

%_d_y.daz’

» Software also implements gradient descent (and friends)



Nice visual explanations

https://www.youtube.com/playlist?1list=PLZHQObOW
TQDNU6R1_67000Dx_ZCJB-3pi

3Blue1Brown o
@3blue1brown 5.49M subscribers 135 videos

3Blue1Brown, by Grant Sanderson, is some combination of math and enter... >

3blueTbrown.com and 7 more links



https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi




Programming pattern: training

model _dff %>%
compile(
loss = "sparse_categorical _crossentropy",
optimizer = "adam"

)

model _dff %>%
fit(
X X,
y Y
batch_size = 32,
epochs = 10
)



Conclusion: training

- We need a loss function (e.g., squared error)
« We need gradients (how to change 8 to reduce L(0))

« Gradient descent: take steps in direction of -gradient
e Stochastic GD: do this with data batches
- Software handles all of this (black box!)

« Advantage: we can focus on the architecture



Different architectures

By adjusting the arrows, layers, and
activation functions, you can create
models that are tailored to specific
data, e.g.

» Convolutional (CNN): images, text,
sound

e Recurrent (RNN): time series, text

 Graph (GNN): networks

(O Backfed Input Cell
Input Cell

/\ Noisy Input Cell
Hidden Cell

©) Probablistic Hidden Cell

) Spiking Hidden Cell

. Output Cell

. Match Input Output Cell

. Recurrent Cell

. Memory Cell

. Different Memory Cell
Kernel

O Convolution or Pool

Markov Chain (MC)

Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM)
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Neural Networks ..........
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Image processing with
convolutional neural networks



What is a convolution

 Convolution is applying a kernel (filter) over an image

» The kernel (filter) defines which feature is important in the
image



What is a convolutic_)n

Original Image =

. L Q.
TS0 o

Now consider a 2 x 2 filter of the form

Convolution Filter = [a B ] :
voo0

When we convolve the image with the filter, we get the result®

ao+bB+dy+ed ba+eB+ey+ [
Convolved Image = |da+eS+gy+ho ea+ fB+hy+io] .
ga+hB+ v+ kS ha+if+ky+16




What is a convolution

https://github.com/vdumoulin/conv_arithmetic



Back to MNIST



Detecting diagonal lines with
convolution

s By s
S mw



Convolution layers

e A convolutional neural
network is a NN with one or
more convolution layers

* The parameters / weights in
a convolution layer are the
elements of the filter

* The filter is learnt by the
network!

32

convolve

FIGURE 10.8. Architectu
Conwvolution layers are inte
size by a factor of 2 in botl



Convolution layers

* In each convolution layer, 32
you can create multiple
filters
 Number of parameters is
function of: convolve
« Number of filters (e.g. 6
.u | , (e.g.6) FIGURE 10.8. Architectu
-+ Size of each filter (e.g. 2x2) Conwvolution layers are inte
« NOT the input dimension! size by a factor of 2 in botl

 Parameter sharing



Pooling layer

« Convolution layers are
usually followed by a
pooling layer

« Reduces dimensionality

 Location invariance:
Robustness against pixel
shift / small rotations

* Max pool most common

32

convolve

FIGURE 10.8. Architecture of a de
Conwvolution layers are interspersed 1
size by a factor of 2 in both dimensic



Pooling layer

Max pool
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Architecture of a CNN

32

convolve

FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Conwvolution layers are interspersed with 2 X 2 max-pool layers, which reduce the
size by a factor of 2 wn both dimensions.



Applying CNN to MNIST

model_cnn <-
keras_model _sequential(input_shape = c(28, 28, 1)) %>%
layer_conv_2d(6, c(5, 5)) %>%
layer _max_pooling 2d(pool_size = c(4, 4)) %>%
layer flatten() %>%
layer _dense(units = 32, activation = "relu") %>%

"softmax")

layer_dense(10, activation



Model summary

summary(model_cnn)

Layer (type) Output Shape Param #

max_pooling2d_2 (MaxPooling2)  (Nome, 6, 6,6 o
flatten_3 (Flatten)  (Nome, 2180 o
dense_s (ense)  (me, 32)  ess
dense7 (ense)  (ome, 100 3

Total params: 7,430
Trainable params: 7,430

Non-trainable params: 0



Compare to feed-forward model

summary(model _dff)

Layer (type) Output Shape Param #
flatten (Flattem)  (none, 786 o
dense_1 (Dense) ~ (Nome, 256)  2009%@
dense_2 (Dense) ~ (Nome, 128) 328906
dense_3 (Dense) ~ (Nome, 10) 1290

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0



Applying CNN to MNIST

model_cnn %>%

compile(
loss = "sparse_categorical_crossentropy",
optimizer = "adam"

)

model_cnn %>%
fit(
X = mnist$train$x,
y = mnist$train$y,
epochs = 10,
validation_split = 0.2,
verbose = 2



Performance comparison: DFF

pred

obs 0 1 2 3 4 5 6 7 8 9
® 975 0 1 0 0 1 0 0 2 1
1 0 1129 1 1 0 1 1 2 0 0
2 4 0 1015 2 0 0 3 2 6 0
3 0 0 6 991 0 4 0 4 1 4
4 3 2 2 ® 952 0 5 2 0 16
5 3 0 0 10 ® 869 A 0 3 3
6 6 2 0 1 2 4 942 0 1 0
7 2 5 6 2 0 0 0 1004 3 6
8 6 0 2 3 2 4 1 4 946 6
9 4 3 0 2 3 1 1 3 1 991



Performance comparison: CNN

pred

obs 0 1 2 3 4 5 6 7 8 9
0 971 0 1 0 1 1 2 1 2 1
1 0 1126 2 1 0 0 2 0 4 0
2 1 1 1020 1 1 0 0 1 6 1
3 0 0 2 997 0 5 0 1 2 3
4 0 0 1 0 970 0 0 0 1 10
5 2 0 0 3 0 881 3 0 2 1
6 5 2 0 0 5 2 941 0 3 0
7 1 3 15 3 0 1 0 994 3 8
8 5 0 3 2 0 0 2 2 956 4
9 1 1 0 1 4 5 0 2 6 989



Performance comparison: CNN

# accuracy
sum(diag(cmat_dff)) / sum(cmat_dff)

#> [1] 0.9814
sum(diag(cmat_cnn)) / sum(cmat_cnn)

#> [1] 0.9845



What about the features?

Unboxing the black box

 Extract the weights of the convolution layer to find the
features (filters) that were learnt

« Apply the filters to some example images to get an
Idea of which features are discriminative for the
different numbers

(There are other advanced methods, like layerwise relevance
propagation, shapley values, ...)
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Similarity to visual brain area

These learnt filters V1 physiology: orientation selectivity
are similar to monkey

visual area 1 (V1)
neuron sensitivities

2

wh
f=3
1

F
(=)
1

http://www.cns.nyu.e
du/~david/courses/p
erception/lecturenot
es/V1/lgn-V1.html

[
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1

S
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Neural response (spikes/sec)

(=]

T 1 1 ] ]
-40 =20 0 20 40
Stimulus orientation (deg)

Hubel & Wiesel, 1968


http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html




Cool hack: pretrained CNNs

« Download the convolutional layer weights from existing neural
network trained on many images

« Apply them to your own images
« Result: a feature vector per image

« Use these feature vectors as input dataset for:

» Deep feedforward neural network
* Logistic regression
« Support vector machine

* This can work really well!



Conclusion: CNN

» Convolution = applying kernel (filter) over an image

* CNNs employ convolution layers
« Parameter sharing
 Feature detection

 Followed by pooling layers
e location invariance

- State-of-the art in image recognition
« Use pretrained networks as a quick proxy




Battling the curse of dimensionality



Regularization in NNs

« We may have thousands or even millions of
parameters

* How can we avoid overfitting?
* How can we fight the curse of dimensionality?

« NNs are not magic: we need regularization.
« Regularization is anything which introduces bias in the

parameters to improve generalization (Goodfellow et al.,
2016)



Regularization in NNs

 Convolution: parameters are set to be equal to one another in
different areas of image (parameter sharing)

* L1or L2 penalty applied to weights is common in neural
networks (keras can do it!)

 Dropout regularization: In each iteration, only update a
subset of the parameters

- Early stopping: Do not train for many epochs, but only until
validation set loss does not improve

- Data augmentation: Add shifted / rotated versions of images
to input (upside-down tiger is still a tiger!)



Conclusion

* Introduction to neural networks

* Feed-forward & deep neural networks
 Training / optimization

« Convolutional neural networks
 Battling the curse of dimensionality



Epilogue: neural network zoo



Neural network zoo

*You can see how far we got:
Perceptron (nonlinear regression

e There iIs much more ©

-eed forward
Deep feed forward

Deep convolutional network

—

A mostly complete chart o

: Input Cell N e U ra l N e

© Backfed Input Cell ©2019 Fjodor van Veen & Stefan Le

r kS Deep Feed Forward (DFF)

ovinstitute.org

\A~ Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

. Hidden Cell 7 ( 7
. Probablistic Hidden Cell : : i

. Spiking Hidden Cell

. Capsule Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM Recurrent Unit (GRU)
PR ey o Q o Q

NN Y NTSIING
. Output Cell :\ gd“;xgdh;xg ' gd“;zgd“;xg o ‘zﬁa;:z‘a;:z
PR PR PR

© Matchinput Output Cell

. Recurrent Cell

. Memory Cell

. Gated Memory Cell

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

~ Kernel

© Convolution or Pool

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

_ Q
3 o
¢ NN NI NN
- D% <LK
e I 0y, 999 8 S
o N NWZa\\
©)
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
,,7“\, — ;,‘7~‘\,\
~>7<»\/~ O/O/\ﬂ - >S e
U N e AN NSNA
>§/ > V\O/Q\» - /\>7</~/Q
>< N~ o r\o/~ = ><\
a o~ U\O/V\N A
= I M A =Xz
X0 o X >

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

YaYa¥aY
A A WA AW

Deep Residual Network (DRN)

Capsule Network (CN)

Attention Network (AN)

INSE N N
V= QWW/




Deep learning in practice

* Good places to start:
e https://keras.rstudio.com/

 ISLR Chapter 10

A DEEP LEARNING )

g ,l.mGoodk::u,Ymng s

t3Deep Learning

with

Francois Chollet
with J. J. Allaire

/Ill MANNING

Goodfellow et al. Chollet (R/Python version)


https://keras.rstudio.com/

This was just the start

 Recurrent neural networks: for sequences (like text!)
 BERT (specific text processing model)
» Autoencoders (nonlinear dimension reduction)

« Generative adversarial networks
https://thispersondoesnotexist.com/

» Look at https://www.asimovinstitute.org/neural-
network-zoo/



https://thispersondoesnotexist.com/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

