
Deep learning

Erik-Jan van Kesteren

Feed-forward and convolutional neural
networks for image recognition

Supervised machine learning

1. Regression (predicting continuous outcomes)
2. Model evaluation
3. Classification (predicting discrete outcomes)
4. Deep learning

Today
• Introduction to neural networks
• Feed-forward & deep neural networks
• Training / optimization
• Convolutional neural networks
• Battling the curse of dimensionality

Introduction

Why should we learn this?
State-of-the-art performance on various tasks
• Text prediction (your phone’s keyboard)
• Text mining (at the end of this course!)
• Forecasting
• Object recognition
• Sound recognition
• Spam filtering
• Image generation
• Style transfer
• Image denoising
• Compression (dimension reduction)
• …

paperswithcode.com/sota

http://bethgelab.org

“Hello world” of neural networks
• MNIST (Modified

National Institute
of Standards and
Technology)
• Handwritten digits
• 28 * 28 pixels
• 60 000 training

images and 10 000
testing images

So what is a neural network?

Neural networks
𝑦 = 𝑓 𝑋 + ϵ

• Neural networks are a way to specify 𝑓 𝑋
• You can display 𝑓 𝑋 graphically

• Let’s graphically represent linear regression!
𝑓 𝑋! = '

"#$

%
𝛽"𝑥"!

Linear regression as neural net
𝑓 𝑋! = 𝛼 +&

"#$

%
𝛽"𝑥"!Graphical representation

• Parameters are arrows
• Arrows ending in a node

are summed together
• Intercept is not drawn

Linear regression as neural net
𝑓 𝑋! = 𝜷 +&

"#$

%
𝒘"𝑥"!Neural network jargon

• Parameter = weight
• Intercept = bias

Single layer neural networks
𝑦 = 𝑓 𝑋 + ϵ

Specify a layer with K hidden units called 𝐴

𝑓 𝑋 = 𝛽& +	'
'#$

(
𝛽'𝐴'

Where

𝐴' = ℎ' 𝑋 = 𝑔 𝑤&' +	'
"#$

%
𝑤"'𝑥"

Single layer neural networks

Single layer neural networks
•What about the function 𝑔 ⋅ ?
• This is called the activation function
• A transformation of the linear combination of

predictors

ℎ' 𝑋 = 𝑔 𝑤&' +	'
"#$

%
𝑤"'𝑥"

Activation functions
Linear: 𝒈 𝒙 = 𝒙 Sigmoid: 𝒈 𝒙 = 𝟏

𝟏'𝒆!𝒙

ReLu: 𝒈 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙) • Rectified linear (ReLu) is
most popular nowadays
• Nonlinearity necessary!

Otherwise: collapse to
linear regression

Activation functions
We can go wider
• More hidden units -> more transformations of input
• Similar to basis functions, feature engineering

Universal function approximation theorem
Any “well-behaved” function can be represented by neural net
of sufficient width with nonlinear activation function

(you may need an inconvenient amount of hidden units!)

https://miro.medium.com/max/1400/1*YDS2pY--VzdsrmWPoBlI0w.gif

Single layer neural networks

Let’s take it further

Feed-forward neural networks
We can go deeper
• More hidden layers after one another
• Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net
of sufficient depth with nonlinear activation function

(deep neural nets may be more tractable than wide)

Feed-forward neural networks

Feed-forward neural networks
Feed-forward network
architecture defined by:
• Number of layers
• Number of hidden units

in each layer
• Activation function for

each layer
• Activation function for

output layer

Prediction for MNIST
Each example has:
• 28*28 = 784 input features
• Values between 0-255 (8 bit)
• Usually normalized to be 0-1
• 1 = black, 0 = white, 0.5 = grey

• 10 outcome categories (0-9)
• One-hot encoding for outcome
• (cool way to say dummy coding)
• 1 = 0 1 0 0 0 0 0 0 0 0
• 5 = 0 0 0 0 0 1 0 0 0 0

Keras!
library(keras)

model_dff <-
keras_model_sequential() %>%
layer_flatten(input_shape = c(28, 28)) %>%
layer_dense(units = 256, activation = "relu") %>%
layer_dense(units = 128, activation = "relu") %>%
layer_dense(10, activation = "softmax")

Keras!
summary(model_dff)

Layer (type) Output Shape Param #
==
flatten (Flatten) (None, 784) 0
__
dense_1 (Dense) (None, 256) 200960
__
dense_2 (Dense) (None, 128) 32896
__
dense_3 (Dense) (None, 10) 1290
==
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
__

How to train the model

Training
• We need some way to measure how well the network does
• Parameters that make the network perform well are good!

• Remember ML estimation: finding !𝜃 maximizing 𝑝 𝑦 !𝜃

• Remember OLS estimation: finding !𝛽 minimizing ∑ 𝑦 − 𝑋 !𝛽
!

• Same for neural nets: we minimize some loss function 𝐿 𝜃

Loss function
• For continuous outcomes you can use squared error

(same as linear regression!)
𝐿 𝜃 = 𝑓 𝑋"; 𝜃 − 𝑦" !

• For binary outcomes you can use binary cross-entropy
(same as logistic regression!)

𝐿 𝜃 = − 𝑦" log 𝑓 𝑋"; 𝜃 + 1 − 𝑦" log 𝑓 𝑋"; 𝜃

Loss function
• What do the parameters need to be in order to minimize loss?
• We don’t know this!
• But we might know the direction in which we need to move to

decrease the loss
• This direction is called the gradient (of loss w.r.t parameters)

𝑔 𝜃 = ∇#=
𝜕
𝜕𝜃

𝐿 𝜃

• (Looks scary, but it’s just a number for each parameter)

Gradient descent
Iteration: step of size 𝜆 in the direction of the negative gradient

𝜃 !"# = 𝜃 ! − 𝜆 ⋅ 𝑔 𝜃 !

Let’s try it out with a simple example!
• 𝐿 𝜃 = 𝜃! − 𝜃 + 0.25
• 𝑔 𝜃 = 2𝜃 − 1
• 𝜆 = 0.25

Stochastic gradient descent
• Instead of computing the gradients w.r.t. the entire

loss function, only use a random batch of data

• Take a step after each batch (e.g., 32 rows)

• If batch size = 1, take a step after each example

• Common batch sizes: 32, 64, 128, 256, 512

• One look at the full data = 1 epoch

Stochastic gradient descent
• batch mode: where the batch size is equal to the total

dataset thus making the iteration and epoch values equal
• mini-batch mode: where the batch size is greater than

one but less than the total dataset size. Usually, a
number that can be divided into the total dataset size.
• stochastic mode: where the batch size is equal to one.

The gradient and the neural network parameters are
updated after each sample.

https://ai.stackexchange.com/questions/8560/how-do-i-choose-the-optimal-batch-size

Gradient computation
• But in neural networks, how do we compute gradients?
• We have functions of functions!
• Software like tensorflow / Keras / torch does this for you!
• Backpropagation: smart repeated use of the chain rule to compute

derivatives

• Software also implements gradient descent (and friends)

Nice visual explanations

https://www.youtube.com/playlist?list=PLZHQObOW
TQDNU6R1_67000Dx_ZCJB-3pi

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Programming pattern: training
model_dff %>%
compile(
loss = "sparse_categorical_crossentropy",
optimizer = "adam"

)

model_dff %>%
fit(
x = X,
y = y,
batch_size = 32,
epochs = 10

)

Conclusion: training
•We need a loss function (e.g., squared error)
•We need gradients (how to change 𝜃 to reduce 𝐿 𝜃)
• Gradient descent: take steps in direction of -gradient
• Stochastic GD: do this with data batches
• Software handles all of this (black box!!)

• Advantage: we can focus on the architecture

Different architectures

• By adjusting the arrows, layers, and
activation functions, you can create
models that are tailored to specific
data, e.g.
• Convolutional (CNN): images, text,

sound
• Recurrent (RNN): time series, text
• Graph (GNN): networks
• …

Image processing with
convolutional neural networks

What is a convolution
• Convolution is applying a kernel (filter) over an image
• The kernel (filter) defines which feature is important in the

image

What is a convolution

What is a convolution

https://github.com/vdumoulin/conv_arithmetic

Back to MNIST

Detecting diagonal lines with
convolution

Convolution layers
• A convolutional neural

network is a NN with one or
more convolution layers
• The parameters / weights in

a convolution layer are the
elements of the filter
• The filter is learnt by the

network!

Convolution layers
• In each convolution layer,

you can create multiple
filters
• Number of parameters is

function of:
• Number of filters (e.g. 6)
• Size of each filter (e.g. 2x2)
• NOT the input dimension!

• Parameter sharing

Pooling layer
• Convolution layers are

usually followed by a
pooling layer
• Reduces dimensionality
• Location invariance:

Robustness against pixel
shift / small rotations
• Max pool most common

Pooling layer

Architecture of a CNN

Applying CNN to MNIST
model_cnn <-
keras_model_sequential(input_shape = c(28, 28, 1)) %>%
layer_conv_2d(6, c(5, 5)) %>%
layer_max_pooling_2d(pool_size = c(4, 4)) %>%
layer_flatten() %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(10, activation = "softmax")

Model summary
summary(model_cnn)

Layer (type) Output Shape Param #

===

conv2d_2 (Conv2D) (None, 24, 24, 6) 156

max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 6) 0

flatten_3 (Flatten) (None, 216) 0

dense_8 (Dense) (None, 32) 6944

dense_7 (Dense) (None, 10) 330

===

Total params: 7,430

Trainable params: 7,430

Non-trainable params: 0

Compare to feed-forward model
summary(model_dff)

Layer (type) Output Shape Param #
==
flatten (Flatten) (None, 784) 0
__
dense_1 (Dense) (None, 256) 200960
__
dense_2 (Dense) (None, 128) 32896
__
dense_3 (Dense) (None, 10) 1290
==
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
__

Applying CNN to MNIST
model_cnn %>%

compile(
loss = "sparse_categorical_crossentropy",
optimizer = "adam"

)

model_cnn %>%
fit(

x = mnist$train$x,
y = mnist$train$y,
epochs = 10,
validation_split = 0.2,
verbose = 2

)

Performance comparison: DFF
pred
obs 0 1 2 3 4 5 6 7 8 9
 0 975 0 1 0 0 1 0 0 2 1
 1 0 1129 1 1 0 1 1 2 0 0
 2 4 0 1015 2 0 0 3 2 6 0
 3 0 0 6 991 0 4 0 4 1 4
 4 3 2 2 0 952 0 5 2 0 16
 5 3 0 0 10 0 869 4 0 3 3
 6 6 2 0 1 2 4 942 0 1 0
 7 2 5 6 2 0 0 0 1004 3 6
 8 6 0 2 3 2 4 1 4 946 6
 9 4 3 0 2 3 1 1 3 1 991

Performance comparison: CNN
pred
obs 0 1 2 3 4 5 6 7 8 9
 0 971 0 1 0 1 1 2 1 2 1
 1 0 1126 2 1 0 0 2 0 4 0
 2 1 1 1020 1 1 0 0 1 6 1
 3 0 0 2 997 0 5 0 1 2 3
 4 0 0 1 0 970 0 0 0 1 10
 5 2 0 0 3 0 881 3 0 2 1
 6 5 2 0 0 5 2 941 0 3 0
 7 1 3 15 3 0 1 0 994 3 8
 8 5 0 3 2 0 0 2 2 956 4
 9 1 1 0 1 4 5 0 2 6 989

Performance comparison: CNN
accuracy
sum(diag(cmat_dff)) / sum(cmat_dff)

#> [1] 0.9814

sum(diag(cmat_cnn)) / sum(cmat_cnn)

#> [1] 0.9845

What about the features?
Unboxing the black box
• Extract the weights of the convolution layer to find the

features (filters) that were learnt
• Apply the filters to some example images to get an

idea of which features are discriminative for the
different numbers

(There are other advanced methods, like layerwise relevance
propagation, shapley values, …)

Similarity to visual brain area
These learnt filters
are similar to monkey
visual area 1 (V1)
neuron sensitivities

http://www.cns.nyu.e
du/~david/courses/p
erception/lecturenot
es/V1/lgn-V1.html

http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html

Cool hack: pretrained CNNs
• Download the convolutional layer weights from existing neural

network trained on many images
• Apply them to your own images
• Result: a feature vector per image
• Use these feature vectors as input dataset for:

• Deep feedforward neural network
• Logistic regression
• Support vector machine
• …

• This can work really well!!

Conclusion: CNN
• Convolution = applying kernel (filter) over an image
• CNNs employ convolution layers
• Parameter sharing
• Feature detection

• Followed by pooling layers
• location invariance

• State-of-the art in image recognition
• Use pretrained networks as a quick proxy

Battling the curse of dimensionality

Regularization in NNs
•We may have thousands or even millions of

parameters
• How can we avoid overfitting?
• How can we fight the curse of dimensionality?
• NNs are not magic: we need regularization.
• Regularization is anything which introduces bias in the

parameters to improve generalization (Goodfellow et al.,
2016)

Regularization in NNs
• Convolution: parameters are set to be equal to one another in

different areas of image (parameter sharing)
• L1 or L2 penalty applied to weights is common in neural

networks (keras can do it!)
• Dropout regularization: In each iteration, only update a

subset of the parameters
• Early stopping: Do not train for many epochs, but only until

validation set loss does not improve
• Data augmentation: Add shifted / rotated versions of images

to input (upside-down tiger is still a tiger!)

Conclusion
• Introduction to neural networks
• Feed-forward & deep neural networks
• Training / optimization
• Convolutional neural networks
• Battling the curse of dimensionality

Epilogue: neural network zoo

Neural network zoo
• You can see how far we got:
• Perceptron (nonlinear regression)
• Feed forward
• Deep feed forward
• Deep convolutional network

• There is much more J

Deep learning in practice

• Good places to start:
• https://keras.rstudio.com/

• ISLR Chapter 10

Goodfellow et al. Chollet (R/Python version)

https://keras.rstudio.com/

This was just the start
• Recurrent neural networks: for sequences (like text!)
• BERT (specific text processing model)
• Autoencoders (nonlinear dimension reduction)
• Generative adversarial networks

https://thispersondoesnotexist.com/

• Look at https://www.asimovinstitute.org/neural-
network-zoo/

https://thispersondoesnotexist.com/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

