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networks for image recognition



Supervised machine learning

1. Regression (predicting continuous outcomes)
2. Model evaluation
3. Classification (predicting discrete outcomes)
4. Deep learning



Today
• Introduction to neural networks
• Feed-forward & deep neural networks
• Training / optimization
• Convolutional neural networks
• Battling the curse of dimensionality



Introduction



Why should we learn this?
State-of-the-art performance on various tasks
• Text prediction (your phone’s keyboard)
• Text mining (at the end of this course!)
• Forecasting
• Object recognition
• Sound recognition
• Spam filtering
• Image generation
• Style transfer
• Image denoising
• Compression (dimension reduction)
• …



paperswithcode.com/sota



http://bethgelab.org



“Hello world” of neural networks
• MNIST (Modified 

National Institute 
of Standards and 
Technology)
• Handwritten digits
• 28 * 28 pixels
• 60 000 training 

images and 10 000 
testing images



So what is a neural network?



Neural networks
𝑦 = 𝑓 𝑋 + ϵ

• Neural networks are a way to specify 𝑓 𝑋
• You can display 𝑓 𝑋 graphically

• Let’s graphically represent linear regression!
𝑓 𝑋! = '

"#$

%
𝛽"𝑥"!



Linear regression as neural net
𝑓 𝑋! = 𝛼 +&

"#$

%
𝛽"𝑥"!Graphical representation

• Parameters are arrows
• Arrows ending in a node 

are summed together
• Intercept is not drawn



Linear regression as neural net
𝑓 𝑋! = 𝜷 +&

"#$

%
𝒘"𝑥"!Neural network jargon

• Parameter = weight
• Intercept = bias



Single layer neural networks
𝑦 = 𝑓 𝑋 + ϵ

Specify a layer with K hidden units called 𝐴

𝑓 𝑋 = 𝛽& +	'
'#$

(
𝛽'𝐴'

Where 

𝐴' = ℎ' 𝑋 = 𝑔 𝑤&' +	'
"#$

%
𝑤"'𝑥"



Single layer neural networks



Single layer neural networks
•What about the function 𝑔 ⋅ ?
• This is called the activation function
• A transformation of the linear combination of 

predictors

ℎ' 𝑋 = 𝑔 𝑤&' +	'
"#$

%
𝑤"'𝑥"



Activation functions
Linear: 𝒈 𝒙 = 𝒙 Sigmoid: 𝒈 𝒙 = 𝟏

𝟏'𝒆!𝒙

ReLu: 𝒈 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙) • Rectified linear (ReLu) is 
most popular nowadays
• Nonlinearity necessary! 

Otherwise: collapse to 
linear regression



Activation functions
We can go wider
• More hidden units -> more transformations of input
• Similar to basis functions, feature engineering

Universal function approximation theorem
Any “well-behaved” function can be represented by neural net 
of sufficient width with nonlinear activation function

(you may need an inconvenient amount of hidden units!)



https://miro.medium.com/max/1400/1*YDS2pY--VzdsrmWPoBlI0w.gif



Single layer neural networks



Let’s take it further



Feed-forward neural networks
We can go deeper
• More hidden layers after one another
• Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net 
of sufficient depth with nonlinear activation function

(deep neural nets may be more tractable than wide)



Feed-forward neural networks



Feed-forward neural networks
Feed-forward network 
architecture defined by:
• Number of layers
• Number of hidden units 

in each layer
• Activation function for 

each layer
• Activation function for 

output layer



Prediction for MNIST
Each example has:
• 28*28 = 784 input features
• Values between 0-255 (8 bit)
• Usually normalized to be 0-1
• 1 = black, 0 = white, 0.5 = grey

• 10 outcome categories (0-9)
• One-hot encoding for outcome
• (cool way to say dummy coding)
• 1 = 0 1 0 0 0 0 0 0 0 0 
• 5 = 0 0 0 0 0 1 0 0 0 0



Keras!
library(keras)

model_dff <-
keras_model_sequential() %>% 
layer_flatten(input_shape = c(28, 28)) %>% 
layer_dense(units = 256, activation = "relu") %>% 
layer_dense(units = 128, activation = "relu") %>% 
layer_dense(10, activation = "softmax")



Keras!
summary(model_dff)

Layer (type)                          Output Shape                       Param #      
======================================================================================
flatten (Flatten)                     (None, 784)                        0            
______________________________________________________________________________________
dense_1 (Dense)                       (None, 256)                        200960       
______________________________________________________________________________________
dense_2 (Dense)                       (None, 128)                        32896        
______________________________________________________________________________________
dense_3 (Dense)                       (None, 10)                         1290         
======================================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
______________________________________________________________________________________



How to train the model



Training
• We need some way to measure how well the network does
• Parameters that make the network perform well are good!

• Remember ML estimation: finding !𝜃 maximizing 𝑝 𝑦 !𝜃

• Remember OLS estimation: finding !𝛽 minimizing ∑ 𝑦 − 𝑋 !𝛽
!

• Same for neural nets: we minimize some loss function 𝐿 𝜃



Loss function
• For continuous outcomes you can use squared error

(same as linear regression!)
𝐿 𝜃 = 𝑓 𝑋"; 𝜃 − 𝑦" !

• For binary outcomes you can use binary cross-entropy
(same as logistic regression!)

𝐿 𝜃 = − 𝑦" log 𝑓 𝑋"; 𝜃 + 1 − 𝑦" log 𝑓 𝑋"; 𝜃



Loss function
• What do the parameters need to be in order to minimize loss?
• We don’t know this!
• But we might know the direction in which we need to move to 

decrease the loss
• This direction is called the gradient (of loss w.r.t parameters)

𝑔 𝜃 = ∇#=
𝜕
𝜕𝜃

𝐿 𝜃

• (Looks scary, but it’s just a number for each parameter)



Gradient descent
Iteration: step of size 𝜆 in the direction of the negative gradient

𝜃 !"# = 𝜃 ! − 𝜆 ⋅ 𝑔 𝜃 !

Let’s try it out with a simple example!
• 𝐿 𝜃 = 𝜃! − 𝜃 + 0.25
• 𝑔 𝜃 = 2𝜃 − 1
• 𝜆 = 0.25





Stochastic gradient descent
• Instead of computing the gradients w.r.t. the entire 

loss function, only use a random batch of data

• Take a step after each batch (e.g., 32 rows)

• If batch size = 1, take a step after each example 

• Common batch sizes: 32, 64, 128, 256, 512

• One look at the full data = 1 epoch



Stochastic gradient descent
• batch mode: where the batch size is equal to the total 

dataset thus making the iteration and epoch values equal
• mini-batch mode: where the batch size is greater than 

one but less than the total dataset size. Usually, a 
number that can be divided into the total dataset size.
• stochastic mode: where the batch size is equal to one. 

The gradient and the neural network parameters are 
updated after each sample.

https://ai.stackexchange.com/questions/8560/how-do-i-choose-the-optimal-batch-size



Gradient computation
• But in neural networks, how do we compute gradients? 
• We have functions of functions!
• Software like tensorflow / Keras / torch does this for you!
• Backpropagation: smart repeated use of the chain rule to compute 

derivatives

• Software also implements gradient descent (and friends)



Nice visual explanations

https://www.youtube.com/playlist?list=PLZHQObOW
TQDNU6R1_67000Dx_ZCJB-3pi 

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi




Programming pattern: training
model_dff %>% 
compile(
loss = "sparse_categorical_crossentropy",
optimizer = "adam"

) 

model_dff %>% 
fit(
x = X,
y = y,
batch_size = 32,
epochs = 10

)



Conclusion: training
•We need a loss function (e.g., squared error)
•We need gradients (how to change 𝜃 to reduce 𝐿 𝜃 )
• Gradient descent: take steps in direction of -gradient
• Stochastic GD: do this with data batches
• Software handles all of this (black box!!)

• Advantage: we can focus on the architecture



Different architectures

• By adjusting the arrows, layers, and 
activation functions, you can create 
models that are tailored to specific 
data, e.g. 
• Convolutional (CNN): images, text, 

sound
• Recurrent (RNN): time series, text
• Graph (GNN): networks
• …



Image processing with 
convolutional neural networks



What is a convolution
• Convolution is applying a kernel (filter) over an image
• The kernel (filter) defines which feature is important in the 

image



What is a convolution



What is a convolution

https://github.com/vdumoulin/conv_arithmetic



Back to MNIST



Detecting diagonal lines with 
convolution



Convolution layers
• A convolutional neural 

network is a NN with one or 
more convolution layers
• The parameters / weights in 

a convolution layer are the 
elements of the filter
• The filter is learnt by the 

network!



Convolution layers
• In each convolution layer, 

you can create multiple 
filters
• Number of parameters is 

function of:
• Number of filters (e.g. 6)
• Size of each filter (e.g. 2x2)
• NOT the input dimension!

• Parameter sharing



Pooling layer
• Convolution layers are 

usually followed by a 
pooling layer
• Reduces dimensionality
• Location invariance: 

Robustness against pixel 
shift / small rotations
• Max pool most common



Pooling layer



Architecture of a CNN



Applying CNN to MNIST
model_cnn <-
keras_model_sequential(input_shape = c(28, 28, 1)) %>% 
layer_conv_2d(6, c(5, 5)) %>% 
layer_max_pooling_2d(pool_size = c(4, 4)) %>%
layer_flatten() %>% 
layer_dense(units = 32, activation = "relu") %>% 
layer_dense(10, activation = "softmax")



Model summary
summary(model_cnn)

Layer (type)                                  Output Shape                             Param #         

=======================================================================================================

conv2d_2 (Conv2D)                             (None, 24, 24, 6)                        156             

_______________________________________________________________________________________________________

max_pooling2d_2 (MaxPooling2D)                (None, 6, 6, 6)                          0               

_______________________________________________________________________________________________________

flatten_3 (Flatten)                           (None, 216)                              0               

_______________________________________________________________________________________________________

dense_8 (Dense)                               (None, 32)                               6944            

_______________________________________________________________________________________________________

dense_7 (Dense)                               (None, 10)                               330             

=======================================================================================================

Total params: 7,430

Trainable params: 7,430

Non-trainable params: 0



Compare to feed-forward model
summary(model_dff)

Layer (type)                          Output Shape                       Param #      
======================================================================================
flatten (Flatten)                     (None, 784)                        0            
______________________________________________________________________________________
dense_1 (Dense)                       (None, 256)                        200960       
______________________________________________________________________________________
dense_2 (Dense)                       (None, 128)                        32896        
______________________________________________________________________________________
dense_3 (Dense)                       (None, 10)                         1290         
======================================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
______________________________________________________________________________________



Applying CNN to MNIST
model_cnn %>% 

compile(
loss = "sparse_categorical_crossentropy",
optimizer = "adam"

)

model_cnn %>% 
fit(

x = mnist$train$x, 
y = mnist$train$y,
epochs = 10,
validation_split = 0.2,
verbose = 2

)



Performance comparison: DFF
pred
obs    0    1    2    3    4    5    6    7    8    9
  0  975    0    1    0    0    1    0    0    2    1
  1    0 1129    1    1    0    1    1    2    0    0
  2    4    0 1015    2    0    0    3    2    6    0
  3    0    0    6  991    0    4    0    4    1    4
  4    3    2    2    0  952    0    5    2    0   16
  5    3    0    0   10    0  869    4    0    3    3
  6    6    2    0    1    2    4  942    0    1    0
  7    2    5    6    2    0    0    0 1004    3    6
  8    6    0    2    3    2    4    1    4  946    6
  9    4    3    0    2    3    1    1    3    1  991



Performance comparison: CNN
pred
obs    0    1    2    3    4    5    6    7    8    9
  0  971    0    1    0    1    1    2    1    2    1
  1    0 1126    2    1    0    0    2    0    4    0
  2    1    1 1020    1    1    0    0    1    6    1
  3    0    0    2  997    0    5    0    1    2    3
  4    0    0    1    0  970    0    0    0    1   10
  5    2    0    0    3    0  881    3    0    2    1
  6    5    2    0    0    5    2  941    0    3    0
  7    1    3   15    3    0    1    0  994    3    8
  8    5    0    3    2    0    0    2    2  956    4
  9    1    1    0    1    4    5    0    2    6  989



Performance comparison: CNN
# accuracy
sum(diag(cmat_dff)) / sum(cmat_dff)

#> [1] 0.9814

sum(diag(cmat_cnn)) / sum(cmat_cnn)

#> [1] 0.9845



What about the features?
Unboxing the black box
• Extract the weights of the convolution layer to find the 

features (filters) that were learnt
• Apply the filters to some example images to get an 

idea of which features are discriminative for the 
different numbers

(There are other advanced methods, like layerwise relevance 
propagation, shapley values, …)







Similarity to visual brain area
These learnt filters 
are similar to monkey 
visual area 1 (V1) 
neuron sensitivities 

http://www.cns.nyu.e
du/~david/courses/p
erception/lecturenot
es/V1/lgn-V1.html

http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html




Cool hack: pretrained CNNs
• Download the convolutional layer weights from existing neural 

network trained on many images
• Apply them to your own images
• Result: a feature vector per image
• Use these feature vectors as input dataset for:

• Deep feedforward neural network
• Logistic regression
• Support vector machine
• …

• This can work really well!!



Conclusion: CNN
• Convolution = applying kernel (filter) over an image
• CNNs employ convolution layers
• Parameter sharing
• Feature detection

• Followed by pooling layers
• location invariance

• State-of-the art in image recognition
• Use pretrained networks as a quick proxy



Battling the curse of dimensionality



Regularization in NNs
•We may have thousands or even millions of 

parameters
• How can we avoid overfitting? 
• How can we fight the curse of dimensionality? 
• NNs are not magic: we need regularization.
• Regularization is anything which introduces bias in the 

parameters to improve generalization (Goodfellow et al., 
2016)



Regularization in NNs
• Convolution: parameters are set to be equal to one another in 

different areas of image (parameter sharing)
• L1 or L2 penalty applied to weights is common in neural 

networks (keras can do it!)
• Dropout regularization: In each iteration, only update a 

subset of the parameters
• Early stopping: Do not train for many epochs, but only until 

validation set loss does not improve
• Data augmentation: Add shifted / rotated versions of images 

to input (upside-down tiger is still a tiger!)



Conclusion
• Introduction to neural networks
• Feed-forward & deep neural networks
• Training / optimization
• Convolutional neural networks
• Battling the curse of dimensionality



Epilogue: neural network zoo



Neural network zoo
• You can see how far we got:
• Perceptron (nonlinear regression)
• Feed forward
• Deep feed forward
• Deep convolutional network

• There is much more J



Deep learning in practice

• Good places to start: 
• https://keras.rstudio.com/

• ISLR Chapter 10

Goodfellow et al. Chollet (R/Python version)

https://keras.rstudio.com/


This was just the start
• Recurrent neural networks: for sequences (like text!)
• BERT (specific text processing model)
• Autoencoders (nonlinear dimension reduction)
• Generative adversarial networks 

https://thispersondoesnotexist.com/

• Look at https://www.asimovinstitute.org/neural-
network-zoo/

https://thispersondoesnotexist.com/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

