Daniel Oberski
Department of Methodology & Statistics
Utrecht University

VERSION: 2023-10-10

Supervised machine learning

1. Regression (predicting continuous outcomes)
2. Model evaluation

3. Classification (predicting discrete outcomes)
4. Deep learning

Reminder

« Goal: given a new, unseen, vector data point x; (with
potentially many dimensions), predict a scalar (single value) vy, ;

- To achieve this task, we will learn a function f(x) (model) using
an algorithm (estimator, learner) from labeled training data
points (x, y);

* When asked to perform the task on new, unseen, dgta, we will
output the prediction function learned earlier, y = f(x).

* We will now look at some of these functions (models) and how
they can be learned (estimated)

Some commonly used “learners”

 KNN

* trees

* random forests

« Boosting (e.g. xgboost)
« SVM

* neural nets

Classification

The thing you’re trying to predict is discrete:

* Titanic: Survival/Nonsurvival

« Banking data: Default on/payment of debt

« GPS/Accelerometer data:

» Work/Home/Friend/Parking/Other

* Imagenet: gazelle/tank/pirate/sea lion/tandem bicycle/: : :
e Etc.

Example from the book

FIGURE 2.14. The KNN approach, using K = 3, s illustrated in a s

Classification trees

@ GettingStarted Prediction Competition

Titanic - Machine Learnil;g from Disaster - . _

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle - 16,749 teams - Ongoing

Overview Data Code Discussion Leaderboard Rules Submit Predictions

Description . & Ahoy, welcome to Kaggle! You're in the right place.

Evaluation This is the legendary Titanic ML competition — the best, first challenge for you to dive into ML

Frequently Asked competitions and familiarize yourself with how the Kaggle platform works.

Questions The competition is simple: use machine learning to create a model that predicts which passengers
survived the Titanic shipwreck.

Titanic data

df = pd.read csv('assets/train.csv')

df .head()
Passengerld | Survived | Pclass | Name Sex |Age |SibSp |Parch |Ticket Fare Cabin | Embarked
0f1 0 3 Braund, Mr. Owen Harris male [22.0(1 0 A5 21171 7.2500 [NaN |[S
12 1 1 cumings, Mrs. John Bradley (Florence | ¢ e[38.0 1 0 [PC17599 71.2833(C85 |C
Briggs Th...
I . . STON/O2.

2|3 1 3 Heikkinen, Miss. Laina female |26.0 (0 0 3101282 7.9250 |NaN |S
3|4 1 1 E::;"e’ Mrs. Jacques Heath (Lily May | ¢ ale|35.0 |1 0 113803 53.1000|C123 |S
4|5 0 3 Allen, Mr. William Henry male |35.0|0 0 373450 8.0500 [NaN |S

0.38
100%
0 | yes |-Sex = male-{ no |]
0.19 0.74
65% 35%
——Age >=6.5—— 0 Pclass >= 2.5
0.50
16%
Fare >= 23—
0 1 0 1 1
0.17 0.67 0.11 0.59 0.95

62% 3% 3% 13% 19%

0

0.38
100%
| yes }-logFare <1-{ no | 039
64%
0 logFare < 1.9
0.43
93%
A = 6.
0 0 9e>=6.5— :
0.20 0.40 0.71 0.76

36% 48% 5% 11%

Learning algorithm

Recursive partitioning

1. Find the split that makes observations as similar as possible
on the outcome within that split;

2. Within each resulting group, do (1).

Recursive partitioning

1. Find the split that makes observations as similar as possible
on the outcome within that split;

2. Within each resulting group, do (1).

* Criteria for “as similar as possible”: Purity, MSE reduction, ...
 Early stopping: add after (2):

 “unless fewer than nmin observations in the group” (typically 10);
* “unless improvement less than cp” (typically 0.05);

Fare

100

30

10

..
S z z
° i ®
............................. o A A ee e i
e o 3 .. o 2 % ae °
. p Al A0 ae® . ®
° oo o0 | . ® o = ¢ °
2¢ ..:. ®e % Y ® 4 - .. °
": s .;/J;. :.v’__:;:.ﬂ..f.. e
(1] o o0 00’0, o0 En
* e o oopo.. 5
: ¢ ¢ .f..\: :00.2” .o 2 oos 2 .o ol o ® ‘ :
e D e .‘n.!.p.”n...n.....: o A ..o ... L
' .8 ll!l, ‘oa‘oo"’.o“'o»’ 3» .o o9 o o ® o o :
‘e
: ° : :
o
0 20 40 60 80

Survived
e 0
1

Fare

100

30

10

..

o sfeopbigBtiognelonleeg ooy o, .

20

40

60

Survived

Fare

100

10

Ao A A4 : A °
A 4 ° A
o} A [= .A e
- e AA AA A
S Ao | A AN AL o °
------------------------------- A-S------x----------------x--S-----------------A-----......'----------------------------:------
A A e
= A s §AC° ‘txﬁﬁ; L IV W W N .
VA ° : A
AL 4 ade MM A, A% Lg% A °
o A A A B
o.A oo oo ;:‘ o ® ‘o = e ®
L e e _ b o o P °
§ Az Al :' m‘ .b‘ 0"‘ S o: e ° A
‘ A.n.; ------------- ‘-- .- R . . -------------- ... -----------------------------------
A ‘M oo ® o0 o0 qo
e $ A

- A a _aae P

Survived
B o
L

80
Age

60

40

20

100

30

10

20 40 60 80

Survived
B o
- 1

100

30

10

20 40 60 80

Survived
B o
- 1

Fare

100

10

20 40 60 80

Survived
B o
lll 1

These are the same!

0
alpha [yes }-logFare <1-{ no]
M o g 0.49
64%
Survived
0 logFare <1.9
e 0.43 g
53%
Age >=6.5
0 g
0.40 0.71

48% 5%

Ensemble learners based on trees

The problem with trees

 Trees are not a bad idea, but in practice they tend to overfit
« Use them as basic building block for ensembles

 Random forests: “bagged trees with feature sampling”
« Make trees that are too complex (low bias, high variance);
* Average over bootstrapped samples to cancel out the overfitting parts.

* Boosting: “ensemble of weak learners”
« Make trees that are too simple (high bias, low variance);

« Make more of them for observations with big residuals;
* Average them.

Bagged trees

Training data

s WN

Bootstrap sample #1 Bootstrap sample #2 Bootstrap sample #3

w N wn;
NN P -2 W

=N U e

0.85 0.85
100% 100%,

[=}-dont_know < 2.5 {x) (== }-avgabs_intro < 0.17 {2

woabs total < 0.88
79

avgabs_intro >= 0.65 avgabs_intro >= 0.65 dont_know >= 2.5 avgwrd_total >=

L1 LT T

andom forests:
agged trees with feature sampling

Training data

s WN

Bootstrap sample #1

Bootstrap sample #2 Bootstrap sample #3

w N LW u;
NN P P W
=N R

0.85 0.85 0.84
100% 100% 100%

[1== }-dont_know < 2.5 {=])= |-avgabs_intro < 0.17 {0 | avgabs_total < 0.88{m |

0.89 0 79 091
60% 60% 40%
avgabs_intro >= 0.65 avgabs_intro >= 0.65 dont_know >= 2.5 avgwrd_total >= 10

0.79 0.87 0.79 87 79 79 87
40% 40% 40% 40% 40% 0%

Boosting

* By combining many “weak learners”, a good model is created
* “Wisdom of the crowds”

Source: Schapire & Freund (2012). Boosting: Foundations and Algorithms.

Source: Schapire & Freund (2012). Boosting: Foundations and Algorithms.

Source: Schapire & Freund (2012). Boosting: Foundations and Algorithms.

The final prediction model (classifier)

H =sign | 0.42 + 0.65 +0.92

Figure 1.2
The combined classifier for the toy example of figure 1.1 is computed as the sign of the weighted sum of the
three weak hypotheses, o/ +omho + a3h3, as shown at the top. ThlS is equivalent to the classifier shown at

R U TR . S A e SR S S [S (A T S A IS S T, PP S

Boosting

 Current go-to implementation is xgboost

 Very powerful idea and easy to apply to other things than
classification trees

« Regression boosting, Survival boosting, etc. etc.
« Often SotA in tabular data challenges, ...
e ... after extensive hyperparameter tuning

Tuning

» | earners have “hyperparameters”
* Example: number of trees in RF

 General idea is to use cross-validation to select
hyperparameters

« Some models more sensitive to good choice of hyperparamters
 Examples are boosting and neural nets

0.20-

$

- 0.15- *
= °
o °
. .
=
8 0.10- 3
<<

0.05=-

°e
; &
* :
0.00- —_— . &
gImnet rpart kknn svm ranger xgboost

Algorithm

Figure 2: Boxplots of the tunabilities (AUC) of the different algorithms with respect to
optimal defaults. The upper and lower whiskers (upper and lower line of the
boxplot rectangle) are in our case defined as the 0.1 and 0.9 quantiles of the
tunability scores. The 0.9 quantile indicates how much performance improvement
can be expected on at least 10% of datasets. One outlier of glmnet (value 0.5) is

not shown.

Probst et al. JMLR

AUC tunability

kknn svm

0.5- 0.5-
0
0.1- 0.1-
0.05- 0.05-
e 0
0.01 - — 0.01 -
0.005 - 0.005 -
[]
o®
0.001 - 0.001 -
'S
ranger xgboost
0.5- 0.5-
®
0.1- 0.1-
0.05- 0.05- °
+ °
0.01 - f o ® 0.01 -
0.005 - o 3 0.005 -
0.001 - =h —— el 0.001 -
6 PR) fz> e fo e
N\ 8 \><\° © R id o° '55‘ \\6/ \0/ \
< R\ o o R R
I 4 6\\0/ 0\‘5 \Q‘b'

Hyperparameter

Probst et al. (2019). JMLR

Evaluating classifiers

No free lunch

“*Any two optimization algorithms
are equivalent when their
performance Is averaged across all

possible problems”

(Wolpert & MacReady)

Confusion matrix: Counts

> p_pred <- predict(titanic_tree, newdata = val_df)
> with(val_df, table(p_pred > 0.5, Survived))

Survived

0] 1

FALSE 134 40
TRUE 19 75

Confusion matrix: counts

Survived (observed)

No Yes
Survived (predicted)
No 134 (TN) 40 (FN)
Yes 19 (FP) /5 (TP)

e False positives (FP): 19
e False negatives (FN): 40
* Total errors: FP + FN

Confusion matrix:
Sensitivity (“recall”) and Specificity

> with(val_df, table(p_pred > 0.5, Survived)) %>% prop.table(2)

Survived (observed)

No Yes

Survived (predicted)
No 0.876 0.348
Yes 0.124 0.652
TOTAL 1 1

Specificity: TN+FP = 134 /(134 +19) ~ 0.876

e Sensitivity (“recall”): TP+FN =75/ (75 + 40) ~ 0.652
e Accuracy (ACC): wppimrry ~ 0-780

* Errorrate: 1 — Accuracy ~ 0.220

Confusion matrix:
Negative & positive predictive value

> with(val_df, table(p_pred > 0.5, Survived)) %>% prop.table(1)

Survived (observed) TOTAL

No Yes
Survived (predicted)
No 0.770 0.230 1
Yes 0.202 0.798 1

e NPV: TN+FN =134/ (134 + 40) ~ 0.770
e PPV (“precision”): TP+FP =7/5/(/5+19) ~ 0.798

relevant elements

true negatives

O

O

selected elements

How many selected
items are relevant?

Precision = ———

How many relevant
items are selected?

Recall = ———

Source: https://en.wikipedia.org/wiki/F-score

https://en.wikipedia.org/wiki/F-score

F, score

The F4 score is the harmonic mean of precision and recall:

F, = \/precision - recall

* Like accuracy, the F; quantifies overall amount of error

* Unlike accuracy, F, is not as affected by uneven class
distributions

Titanic example: F; = V0.798%0.652 = 0.52

Overview: some classification metrics

« Sensitivity (=Recall)

» Specificity

 Positive predictive value (=Precision)
* Negative predictive value

« Accuracy

* Many! more:
https://en.wikipedia.org/wiki/Sensitivity and_specificity

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Different thresholds than 0.5

Moving around the threshold affects sensitivity and specificity!
> with(val_df, table(p_pred > 0.4, Survived)) %>% prop.table(2)

Survived
0] 1
FALSE 0.876 0.348
TRUE ©0.124 0.652

> with(val_df, table(p_pred > 0.6, Survived)) %>% prop.table(2)

Survived
0 1
FALSE 0.961 0.522
TRUE 0.039 0.478

True positive rate (recall)

1.0

0.8

0.6

0.4

0.2

0.0

ROC curve for Titanic classification tree

| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate (1 — specificity)

True positive rate (recall)

1.0

0.8

0.6

0.4

0.2

0.0

ROC curve for Titanic classification tree

0.0

I I I I
0.2 0.4 0.6 0.8

False positive rate (1 — specificity)

1.0

Perfect
classifier ROC curve
1.0 '

o
©
o
2 :
3 0.5)
2 //‘D(O%
Q 76
= S
o /
— /’,b(\b

s

/

0.0
0.0 0.5 1.0

False positive rate

» Besides the quality of a single-shot predicted class

(“yes/no”, “survive/die”, ...),

* we could also be interested in the predicted
probability.

 E.g.: “casemix adjustment” for hospital/school
evaluation, risk scores in medicine, betting, ...

On days like today,

how often does it rain?

°C °F Precipitation: 40%
1 7 Humidity: 80%
Wind: 24 km/h

Temperature Precipitation Wind

45% 24% 20% 35% 5%

Utrecht, Netherlands

Thursday
Scattered showers

5% 12% 12%

02:00 05:00 08:00 11:00 14:00

17:00 20:00 23:00

Probability

A probability is a number p such that the proportion of events
given that number is about p.

* Ideally, the classification procedure (e.g. classification tree)
outputs a predicted probability directly.

« Unfortunately,
* Not all classifiers output a predicted probability (e.g. SVM);

* Many classifiers that do give a number between 0 and 1 called a
“predicted probability”, the predicted probability does not give the
correct proportion of events.

This Is the “calibration problem”.

Calibration plot

Probability

A probability is a number p such that the proportion of events
given that number is about p.

* A predicted probability is calibrated when it
conforms to the definition above;

* Check this using a calibration plot

Observed proportion

1.0

0.8

0.6

0.4

0.2

0.0

Calibration of Titanic classification

0.0

I I I I
0.2 0.4 0.6 0.8

Predicted probability

1.0

Post-hoc probability calibration

* Some libraries allow you to tweak the predicted
probabilities so they fit on the curve. This is called
“probability calibration”.

* There are many methods, but the most commonly
used one takes a classification model we know is
calibrated (“logistic regression”) and applies it to the
uncalibrated scores outputted by the classifier;

* You may encounter this in your readings.

Count

Calibration plots (Reliability curves)

Fraction of positives

1.0}
0.8}
0.6+
0.4+
0.2+
=—a Decision Tree raw (0.116)
=—a Decision Tree + Isotonic (0.103)
0.0k m—a Decision Tree + Sigmoid (0.104) |
0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value
6000 - T T T
5000 [Decision Tree raw [Decision Tree + Sigmoid
[Decision Tree + Isotonic
4000 |
3000
2000 |
1000F ﬁ
N — — . . .
0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted value

MSE (“Brier score”)

Setting y = 1 for Yes and y = 0 for No, then the
“average” E(.) of y is the true proportion p, E(y) = p.
We can again evaluate the Mean Square Error (MSE),

now called “Brier score” of our guess, p:
MSE = average((p — y)?)

Turns out MSE can be reworked into two terms:

MSE = Calibration term + AUC term

OPTIONAL! Not assessed.

MSE can be reworked into two terms

Suppose there are K bins of unique(ish) values for our prediction, p.
Then the calibration score C is

K
C=n"1) m (i~ p)?
k=1

The calibration score is the squared deviation in the calibration plot showed earlier.
Perfect (C = 0) when predicted probabilities equal observed proportion of events.

The discrimination ("refinement”) score is
K

D=n"! Z ng Pr (1 — pg)
k=1
Perfect (D = 0) when each prediction bin corresponds to a 1 or a 0. Equivalent to
AUC. Same as “Gini node impurity” used in CART tree learning.

And now:

MSE=C+D

[Blattenberger & Lad 1985]

Calibration in evaluation of ML models

* Important for downstream decision-making
« Sometimes overlooked in ML model evaluation
 Evaluate using more advanced methods in standard software

Class imbalance

* In the Titanic example, the outcome classes are
pretty evenly balanced,;

* That is not typical of many applications: debt default;
iliness; activity; buy/don’t buy; tank/dog/selfie/..;
solid/liquid/gas/plasma,; ...

* When at least one class has very few observations,
this is called class imbalance.

Class imbalance

Problem:
* Measures such as SEN/SPE/ACC/F1 emphasize larger classes;
« What if the smaller classes are the most/equally interesting?

Some solutions:

» Oversampling minority/undersampling majority
* Weighting

* “Embedded”

Original dataset

o)
0
® @
e
o °& %
o & 0q,
o 0603) e
o .@d%)dg%@&
®e gog”ooo8 ‘0\. °
° 5© %8‘0300 "' o
e @
o ° o . :o A o
oo ©°
0o . o:
| I I
-2 0 2
Resampling with SMOTE
o)
OO.
3.
© 5%8 .
0)
o &6%9
0
o S8 o o8
S PR
o o 8 OQ)O. ® °°
%o %
° ® o)
oo ’ -
o) O
| I I
-2 0 2

Resampling with RandomOverSampler

o
oOO
8o
© &0,
o
00060636.0 ®
S)
e °® %3%

o o 08 © 00 o
o ® 80‘0300“"
o 800 8 @

0 @ o
° I .39 " o
o oo ©
o o®
°
| I I
-2 0
Resampling with ADASYN
4
Oy @
o O
86 o2 o

@ ©°
0 s e ..\:o
o.’ ~. .'.
ooO o"‘.
°
=5 0 2

https://imbalanced-learn.org

https://imbalanced-learn.org/

Supervised learning is a large field

* We have emphasized
* Pluralistic approach, coupled with
* Honest model evaluation

 This includes thinking about the task, performance metric,
and training and testing data

» Some of these lead to specific issues in classification (e.qg.
calibration, class imbalance) discussed today (& in book)

* You should now be equipped to start using supervised
learning in practice!

