

Reading Material for Today

- Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
http://www.mmds.org
Chapter 3.1-3.5

Entity Linkage

4

How many names，descriptions are used for the same real－world＂entity＂？

How many names，descriptions are used for the same real－world＂entity＂？

 লन्ডন ลอนดอน இலண்டன் mm6®ைモ๐ Llundain Londain Londe Londen Londen Londen Londinium London Londona Londonas Londoni Londono Londra Londres Londrez Londyn Lontoo Loundres Luân Đôn Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون Kovסívo Лёндан Лондан Лондон Лондон Лондон Ln氏́qnu 伦敦．．．

How many names, descriptions are used for the same real-world "entity"?

How many names, descriptions are used for the same real-world "entity"?

... Or ...

How many "entities" have the same name?

```
London, KY
London, Laurel, KY
London, OH
London, Madison, OH
London, AR
London, Pope, AR
London, TX
London, Kimble, TX
London, MO
London, MO
London, London, MI
London, London, Monroe, MI
London, Uninc Conecuh County, AL
London Uninc Conecuh County,
Conecuh, AL
London, Uninc Shelby County, IN
London, Uninc Shelby County, Shelby, IN
London, Deerfield, WI
London, Deerfield, Dane, WI
London, Uninc Freeborn County, MN
```


... Or ...

How many "entities" have the same name?

London, KY
London, Laurel, KY
London, OH
London, Madison, OH
London, AR
London, Pope, AR
London, TX
London, Kimble, TX
London, MO
London, MO
London, London, MI
London, London, Monroe, MI
London, Uninc Conecuh County, AL
London Uninc Conecuh County, Conecuh, AL
London, Uninc Shelby County, IN
London, Uninc Shelby County, Shelby, IN
London, Deerfield, WI
London, Deerfield, Dane, WI
London, Uninc Freeborn County, MN

Reasons of Different Descriptions

- Text variations:
- Misspellings
- Acronyms

Welcome to|ICDE 2011

The IEEE International Conference on Data Engineering
results and advanced data-intensive applications and dis The mission of the conference is to share research solut identifv new issues and directions for future research anc

- Transformations
- Abbreviations
- etc.

The Journal of Web Semantics lis an interdisciplir various subject areas that contribute to the dev service Web. These areas include: knowledge te semantic grid, obviously disciplines like

*ML Paul-Alexandru Chirita, Wolfgang Neidl: Leveraging personal metadat system J. Web Sem. 8(1): 37-54 (2010)

Reasons for Different Descriptions

- Text variations
- Local knowledge:
- Each source uses different formats
e.g., person from publication vs. person from email
- Lack of global coordination for identifier assignment

Reasons for Different Descriptions

from [VelegrakisBM09]

- Text variations
- Local knowledge
- Evolving nature of data:
- Entity alternative names
- appearing in time
- Updates in entity data

Reasons for Different Descriptions

- Text variations
- Local knowledge
- Evolving nature of data
- New functionality:
- Import data collections from various applications
- e.g., Wikipedia data used in Freebase

Entity Resolution

[Dong et al., Book 2015] [Elmagarmid et al., TKDE 2007] :
identify the different structures/records that model the same real-world object.

Why it is useful

- Improves data quality and integrity
- Fosters re-use of existing data sources
- Optimize space

Application areas:
Linked Data, Social Networks, census data, price comparison portals

Challenges for ER

- Variety - Semantic
- Semi-structured data \rightarrow unprecedented levels of heterogeneity
- Numerous entity types \& vocabularies
- LOD (Linked Open Data) Cloud*: ~50,000 predicates, ~12,000 vocabularies

Atomic similarity methods

Atomic String Similarity - Edit Distance

- Number of operations to convert from $1^{\text {st }}$ to $2^{\text {nd }}$ string
- Operations in Levenstein distance [Lev66]
\rightarrow delete, insert, and update a character with cost 1

Computing Edit Distance - Another Example

- Example: compute the edit distance between intention and execution

I	N	T	E	*	N	T	I	O	N
I	I	\|	\|	\|	\|	\|	\|	\|	\|
$*$	E	X	E	C	U	T	I	O	N
d	S	S		i	s				

- If each operation has cost of 1
- Distance between these is 5
- If substitutions cost 2 (Levenshtein)
- Distance between them is 8

Computing Edit Distance Cont.)

- Dynamic programming: A tabular computation of $D(n, m)$
- Solving problems by combining solutions to subproblems.
- Bottom up
- We compute D(i,j) for small i, j
- And compute larger $D(i, j)$ based on previously computed smaller values
- i.e., compute $D(i, j)$ for all $\mathrm{i}(0<\mathrm{i}<\mathrm{n})$ and $\mathrm{j}(0<\mathrm{j}<\mathrm{m})$

Defining Minimum Edit Distance (Levenshtein)

- Initialization

$$
\begin{aligned}
& D(i, 0)=i \\
& D(0, j)=j
\end{aligned}
$$

- Recurrence Relation:

For each $\mathrm{i}=1 . . . \mathrm{M}$
For each $\mathrm{j}=1 . . \mathrm{N}$

$$
\mathrm{D}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{c}
D(i-1, j)+1 \\
\mathrm{D}(\mathrm{i}, \mathrm{j}-1)+1 \\
\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\begin{array}{l}
2 \\
2 \\
0
\end{array}\left(\begin{array}{c}
\text { if } \mathrm{X}(\mathrm{i}) \neq \mathrm{Y}(\mathrm{i})=\mathrm{Y}(\mathrm{j})
\end{array}\right.
\end{array}\right.
$$

- Termination:
$\mathrm{D}(\mathrm{N}, \mathrm{M})$ is distance

Edit Distance Table - Example

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	1	0	N

Edit Distance Table - Example (Cont.)

N	9									
0	8									
1	7				$\begin{gathered} D(i-1, j)+1 \\ D(i, j-1)+1 \end{gathered}$					
T	6	$D(i, j)=\min$								
N	5				$D(i-1, j-1)+\begin{aligned} & 2 \\ & 0 \end{aligned}\left\{\begin{array}{l} \text { if } w 1(i) \neq w 2(j) \\ \text { if } w 1(i)=w 2(j) \end{array}\right.$					
E	4									
T	3									
N	2									
1	1	\checkmark								
\#	0	1	2	3	4	5	6	7	8	9
	\#	E	X	E	C	U	T	1	O	N

Edit Distance Table - Example (Cont.)

N	9	8	9	10	11	12	11	10	9	8
O	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

Atomic String Similarity - Gap Distance

- Overcome limitation of edit distance with shortened strings
- Considers two extra operations
\rightarrow open gap, and extend gap (with small cost)

$$
\operatorname{cost}=1+0+8 e
$$

Atomic String Similarity - Jaro Similarity

- Small strings, e.g., first and last names
- C is the set of common characters in S_{1} and S_{2}

- Two characters from S_{1} and S_{2} are considered common when they are the same and not farther than $\left[\frac{\max \left(\left|S_{1}\right|,\left|S_{2}\right|\right)}{2}\right]-1$ characters apart.
- T is the number transpositions/2
- c_{1} and c_{2} are a transposition if c_{1} and c_{2} are common but appear in different orders in S_{1} and S_{2}

$$
\operatorname{JaroSim}\left(S_{1}, S_{2}\right)=\frac{1}{3}\left(\frac{C}{\left|S_{1}\right|}+\frac{C}{\left|S_{2}\right|}+\frac{C-T}{C}\right) \quad[J a r 89]
$$

- Example: "DEIS"vs. "DESI"

$$
\mathrm{C}=4, \mathrm{~T}=2 / 2, \quad \text { JaroSim }=\frac{1}{3}\left(\frac{4}{4}+\frac{4}{4}+\frac{4-1}{4}\right)=0.9167
$$

Atomic String Similarity

- Jaro-Winkler similarity [Win99]:
- Extension that gives higher weight to matching prefix
- Increasing it's applicability to names
- $J_{w}\left(S_{1}, S_{2}\right)=J \operatorname{JaroSim}+P * L *(1-J a r o S i m)$
- P is a scaling factor (0.1 by default)
- L is the length of the common prefix up to maximum 4
- Example: Compute J_{w} (arnab, aranb)
- JaroSim $(\operatorname{arnab}, \operatorname{aranb})=\frac{1}{3}\left(\frac{5}{5}+\frac{5}{5}+\frac{4}{5}\right)=0.933$
- $J_{w}(a r n a b, a r a n b)=0.933+0.1 * 2 *(1-0.933)=0.9466$

Atomic String Similarity

- Soundex: A phonetic algorithm that indexes names by their sounds when pronounced in English.
- Consists of the first letter of the name followed by three numbers. Numbers encode similar sounding consonants.
- Remove all W, H
- B, F, P, V encoded as 1, C,G,J, K, Q, S, X, Z as 2
- D, T as $3, L$ as $4, M, N$ as $5, R$ as 6 , Remove vowels
- Concatenate first letter of string with first 3 numerals
- Ex: great and grate become G6EA3 and G6A3E and then G630
- More recent, metaphone, double metaphone etc.

Similarity methods for sets

Similarity methods for sets

- Jaccard similarity/distance

- The Jaccard similarity of two sets is:

3 in intersection 7 in union Jaccard similarity= 3/7 Jaccard distance $=4 / 7$

- Jaccard distance: $J_{\text {dist }}=1-J_{\text {sim }}\left(C_{1}, C_{2}\right)=1-\frac{\left|C_{1} \cap C_{2}\right|}{\left|C_{1} \cup C_{2}\right|}$
- Similarity between $\{a, b, c, d\}$ and $\{a, b, e, f\}=2 / 6=1 / 3$
- Jaccard bag similarity counts the repetition of the elements
- The similarity between $\{a, a, a, b\}$ and $\{a, a, b, b, c\}=3 / 9=1 / 3$

Similarity methods for sets

- Sørensen Coefficient (also called Coefficient of Community CC)
- The Sørensen similarity of two sets is computed as:

$$
\operatorname{CC}\left(C_{1}, C_{2}\right)=\frac{2 *\left|C_{1} \cap C_{2}\right|}{\left|C_{1}\right|+\left|C_{2}\right|}
$$

3 in intersection
5 in each set Sørensen similarity $=6 / 10$

- Similarity between $\{a, b, c, d\}$ and $\{a, b, e, f\}=4 / 8=1 / 2$
- Gives more weight for the number of common elements

Similarity methods for sets

- Tversky Index: a generalized form of Jaccard and Sørensen
- The Tversky Index of two sets is computed as:

$$
S\left(C_{1}, C_{2}\right)=\frac{\left|C_{1} \cap C_{2}\right|}{\left|C_{1} \cap C_{2}\right|+\alpha\left|C_{1}-C_{2}\right|+\beta\left|C_{2}-C_{1}\right|}
$$

$$
\alpha=0.2 \& \beta=0.8
$$

Tversky similarity= $3 / 5$

- $\alpha, \beta \geq 0$
- $\alpha=\beta=1 \Rightarrow$ Jaccard similarity
- $\alpha=\beta=0.5 \Rightarrow$ Sørensen similarity

Similarity methods for sets

- Overlap Coefficient: also called Szymkiewicz-Simpson coefficient
- It is defined as:

$$
O C\left(C_{1}, C_{2}\right)=\frac{\left|C_{1} \cap C_{2}\right|}{\operatorname{MIN}\left(\left|C_{1}\right|,\left|C_{2}\right|\right)}
$$

Case of Documents

A Common Metaphor

- Many problems can be expressed as
finding "similar" sets
- Find near-neighbors in high-dimensional space
- Examples:
- Pages with similar words
- For duplicate detection, classification by topic, plagiarism
- Customers who purchased similar products (e.g. Movies)
- Products with similar customer sets (e.g. fans)
- Images with similar features
- Users who visited similar websites

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples
- Example: $\mathbf{k}=\mathbf{2}$; document $\mathbf{D}_{1}=$ abcab

Set of 2-shingles: $\mathbf{S}\left(\mathbf{D}_{1}\right)=\{a b, b c, c a\}$

- Option: Shingles as a bag (multiset), count ab twice: $\mathbf{S}^{\prime}\left(D_{1}\right)=\{a b, b c, c a, a b\}$

Similarity Metric for Shingles

- Represent document D_{1} as a set of its k-shingles $C_{1}=S\left(D_{1}\right)$
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$
J_{\operatorname{sim}}\left(C_{1}, C_{2}\right)=\frac{\left|C_{1} \cap C_{2}\right|}{\left|C_{1} \cup C_{2}\right|}
$$

Challenges for ER

- Variety - Semantic
- Semi-structured data \rightarrow unprecedented levels of heterogeneity
- Numerous entity types \& vocabularies
- LOD Cloud*: ~50,000 predicates, ~12,000 vocabularies
- Volume - Performance
- Millions of entities
- Billions of name-value pairs describing them
- LOD Cloud*: >5,5•107 entities, ~1,5•10 ${ }^{11}$ triples
- Too many documents, Too few memory

Motivation

- Suppose we need to find near-duplicate documents among $N=1$ million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
- $N(N-1) / 2 \approx 5^{*} 10^{11}$ comparisons
- At 10^{5} secs/day and 10^{6} comparisons $/ \mathrm{sec}$, it would take 5 days
- For $\boldsymbol{N}=\mathbf{1 0}$ million, it takes more than a year...

Find Pairs of Similar Documents

- Main idea: Candidates

- Instead of keeping a count of each pair, only keep a count of candidate pairs!
- Pass 1: Take documents and hash them to buckets such that documents that are similar hash to the same bucket
- Pass 2: Only compare documents that are candidates
(i.e., they hashed to a same bucket)
- Benefits: Instead of $\mathrm{O}\left(\mathrm{N}^{2}\right)$ comparisons, we need $\mathrm{O}(\mathrm{N})$ comparisons to find similar documents

How could we use hashing to convert a document to a Sparse Boolean

Vector (where each index represents a different word)?

Hash Tables: Basic Idea

- Use a key (arbitrary string or number) to index directly into an array O(1) time to access records
- A["brand"] = "Ford"
- Need a hash function to convert the key to an integer

	Key	Data
0	brand	ford
1	color	orange
2	kiwi	Australian fruit

Characteristics of a Good Hashing Function

- Returns an integer between 0 and the table size
- Efficiently computable
- Does not waste extra space
- At least one key is hashed to every integer between 0 and the table size
- Minimizes the collisions: the different keys that hash to the same number

Examples of Hashing Functions

- For integer keys: x is the key and m is the table size
- $h_{1}(x)=x \% m$ (\% is the modulus function)
- $h_{2}(x)=x(x+3) \% m$
- Multiplication hashing function
- Select $0<c<1$ and compute $w=x c$
- Take $u=$ fraction part of w
- $h_{3}(x)=\lfloor u m\rfloor$

$m=15$		$c=0.3$	
x	$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$
36	6	9	12
51	6	9	4
8	8	13	6
18	3	3	6
9	9	3	10
47	2	10	1

Examples of Hashing Functions

- For string keys: x is the key and m is the table size
- $h_{1}(x)=\operatorname{sum}(\operatorname{ascii}(x[i])) \% m, \quad 0 \leq i<\operatorname{length}(x)$
- Problem: string with the same set of characters hash to the same number ('abc', ‘bca', ‘acb', ...)
- Solution: consider the string to be integer with base 128
- $h_{2}(x)=\operatorname{sum}\left(\operatorname{ascii}(x[i]) * 128^{i}\right) \% m, 0 \leq i<\operatorname{length}(x)$

- $h_{1}(a b c)=97+98+99=294 \% 15=9$
- $h_{1}(a c b)=294 \% 15=9$
- $h_{2}(a b c)=\left(\left(97 * 128^{2}\right)+(98 * 128)+(99 * 1)\right) \% 15=11$
- $h_{2}(a c b)=\left(\left(97 * 128^{2}\right)+(99 * 128)+(98 * 1)\right) \% 15=3$

Finding similar documents requires more than simple hashing functions

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets
2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

- Candidate pairs!

3 Essential Steps for Similar Docs

3 Essential Steps for Similar Docs

- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row \boldsymbol{e} and column \boldsymbol{s} if and only if \boldsymbol{e} is a member of \boldsymbol{s}
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column:
- Example: $\boldsymbol{J}_{\text {sim }}\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right)=$?
- Size of intersection $=3$; size of union $=6$, Jaccard similarity (not distance) $=3 / 6$
- $d\left(C_{1}, C_{2}\right)=1$ - (Jaccard similarity) $=3 / 6$

Documents				
1	1	1	0	
1	1	0	1	
0	1	0	1	
$\frac{\infty}{\bar{\omega}}$	0	0	0	
1	0	0	1	
1	1	1	0	
1	0	1	0	

Finding Similar Columns

- So far:
- Documents \rightarrow Sets of shingles
- Represent sets as Boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
- Similarity of columns \approx similarity of signatures

Hashing

- Key idea: "hash" each column \boldsymbol{C} to a small signature $\boldsymbol{h}(\boldsymbol{C})$, such that:
(1) $\boldsymbol{h}(\boldsymbol{C})$ is small enough that the signature fits in RAM
(2) $\operatorname{sim}\left(\boldsymbol{C}_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)$ and $\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
- Goal: Find a hash function $h(\cdot)$ such that:
- If $\operatorname{sim}\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right)$ is high, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)=\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
- If $\operatorname{sim}\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right)$ is low, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right) \neq \boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Imagine the rows of the Boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

- Use several (e.g., 100) independent hash functions (i.e., permutations) to create a signature of a column

53

Min-Hashing Example

Similarity of Signatures

- Clearly: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

LSH for Min-Hash

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket
- (Blocking)

Standard Blocking

Algorithm:

1. Select the most appropriate attribute name(s) w.r.t. noise and distinctiveness.
2. Transform the corresponding value(s) into a Blocking Key (BK)
3. For each BK, create one block that contains all entities having this $B K$ in their transformation.

Works as a hash function! \rightarrow Blocks on the equality of BKs

Standard Blocking - Example

Thank you for your attention!

Questions?

Disclaimer: Much of the material presented originates from a number of different presentations and courses of the following people: Yannis Velegrakis (Utrecht University), Jeff Ullman (Stanford
University), Bill Howe (U of Washington), Martin Fouler (Thought Works), Ekaterini loannou (Tilburg University), Themis Palpanas (U of Paris-Descartes). Copyright stays with the authors. No distribution is allowed without prior permission by the authors.

Additional References

- [Jar89] M. A. Jaro: Advances in record linkage methodology as applied to matching the 1985 census of Tampa, Florida. Journal of the American Statistical Association 84: 414-420.
- [Win99] William E. Winkler: The state of record linkage and current research problems. IRS publication R99/04 (http://www.census.gov/srd/www/byname.html)
- Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of the American Statistical Association, 64(328):1183-1210.
- [Lev66] Levenshtein, Vladimir I. (February 1966). "Binary codes capable of correcting deletions, insertions, and reversals". Soviet Physics Doklady. 10 (8): pp. 707-710.

- Summarize what you learned today in 2-minutes

