
Hakim Qahtan

Department of Information and Computing Sciences
Utrecht University

Data Wrangling and Data Analysis

Heterogeneous Data Analysis & String Similarity

Reading Material
for Today
• Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
http://www.mmds.org

Chapter 3.1 – 3.5

2

http://www.mmds.org/

Entity Linkage

3

We have a School Trip to Cairo
Cairo castle in Taiz - Yemen

4

How many names, descriptions are
used for the same real-world “entity”?

(c) Papadakis et al.

5

How many names, descriptions are
used for the same real-world “entity”?

London 런던 ܢܘ$#"! लंडन लंदन લડંન ለንደንロンドン
ল"ন ลอนดอน இல#ட% ლონდონი Llundain
Londain Londe Londen Londen Londen Londinium

London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon نودنول ندنل ندنل ندنل

ןודנול ןאדנאל Λονδίνο Лёндан Лондан Лондон Лондон
Лондон Լոնդոն敦…

6

How many names, descriptions are
used for the same real-world “entity”?

London 런던 ܢܘ$#"! लंडन लंदन લડંન ለንደንロンドン
ল"ন ลอนดอน இல#ட% ლონდონი Llundain
Londain Londe Londen Londen Londen Londinium

London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon نودنول ندنل ندنل ندنل

ןודנול ןאדנאל Λονδίνο Лёндан Лондан Лондон Лондон
Лондон Լոնդոն敦…

capital of UK, host city of the IV Olympic Games, host city of
the XIV Olympic Games, future host of the XXX Olympic
Games, city of the Westminster Abbey, city of the London
Eye, the city described by Charles Dickens in his novels, …

7

How many names, descriptions are
used for the same real-world “entity”?

London 런던 ܢܘ$#"! लंडन लंदन લડંન ለንደንロンドン
ল"ন ลอนดอน இல#ட% ლონდონი Llundain
Londain Londe Londen Londen Londen Londinium

London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon نودنول ندنل ندنل ندنل

ןודנול ןאדנאל Λονδίνο Лёндан Лондан Лондон Лондон
Лондон Լոնդոն敦…

capital of UK, host city of the IV Olympic Games, host city of
the XIV Olympic Games, future host of the XXX Olympic
Games, city of the Westminster Abbey, city of the London
Eye, the city described by Charles Dickens in his novels, …

http://sws.geonames.org/2643743/
http://en.wikipedia.org/wiki/London

http://dbpedia.org/resource/Category:London
…

8

◦ London, KY
◦ London, Laurel, KY
◦ London, OH
◦ London, Madison, OH
◦ London, AR
◦ London, Pope, AR
◦ London, TX
◦ London, Kimble, TX
◦ London, MO
◦ London, MO
◦ London, London, MI
◦ London, London, Monroe, MI
◦ London, Uninc Conecuh County, AL
◦ London, Uninc Conecuh County,

Conecuh, AL
◦ London, Uninc Shelby County, IN
◦ London, Uninc Shelby County, Shelby, IN
◦ London, Deerfield, WI
◦ London, Deerfield, Dane, WI
◦ London, Uninc Freeborn County, MN
◦ ...

How many “entities” have the same name?

… or …

9

◦ London, KY
◦ London, Laurel, KY
◦ London, OH
◦ London, Madison, OH
◦ London, AR
◦ London, Pope, AR
◦ London, TX
◦ London, Kimble, TX
◦ London, MO
◦ London, MO
◦ London, London, MI
◦ London, London, Monroe, MI
◦ London, Uninc Conecuh County, AL
◦ London, Uninc Conecuh County,

Conecuh, AL
◦ London, Uninc Shelby County, IN
◦ London, Uninc Shelby County, Shelby, IN
◦ London, Deerfield, WI
◦ London, Deerfield, Dane, WI
◦ London, Uninc Freeborn County, MN
◦ ...

◦ London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

◦ London, Jack R
2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

◦ London, Jack
1222 Whitetail Trl
Van Buren, AR 72956-7368
(479) 474-4136

◦ London, Jack
7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

◦ ...

How many “entities” have the same name?

… or …

10

Reasons of Different Descriptions

§ Text variations:
• Misspellings
• Acronyms
• Transformations
• Abbreviations
• etc.

11

Reasons for Different Descriptions

§ Text variations
§ Local knowledge:
• Each source uses different formats

e.g., person from publication vs. person from email
• Lack of global coordination for identifier assignment

12

Reasons for Different Descriptions

Jacqueline Lee Bouvier

§ Text variations
§ Local knowledge
§ Evolving nature of data:
• Entity alternative names

• appearing in time
• Updates in entity data

[Vel09]

13

Reasons for Different Descriptions

§ Text variations
§ Local knowledge
§ Evolving nature of data
§ New functionality:
• Import data collections from various applications
• e.g., Wikipedia data used in Freebase

14

Entity Resolution

[Elm07] :
identify the different structures/records that model the same real-world object.

15

Why it is useful

• Improves data quality and integrity
• Fosters re-use of existing data sources
• Optimize space

Application areas:
Linked Data, Social Networks, census data,
price comparison portals

16

Challenges for ER

• Variety – Semantic
• Semi-structured data → unprecedented levels of heterogeneity
• Numerous entity types & vocabularies
• LOD (Linked Open Data) Cloud*: ~50,000 predicates, ~12,000 vocabularies

17

Atomic similarity methods

18

Atomic String Similarity – Edit Distance

e k a t e r i n i

a t e r i n a Update or
substitute

kinsert

cost = 2
assuming the cost of update

(substitute) = 1

§ Number of operations to convert from 1st to 2nd string
§ Operations in Levenstein distance [Lev66]
à delete, insert, and update a character with cost 1

© E. Ioannou

19

Computing Edit Distance – Another Example
• Example: compute the edit distance between intention and execution

• If each operation has cost of 1
• Distance between these is 5

• If substitutions cost 2 (Levenshtein)
• Distance between them is 8

I N T E * N T I O N
| | | | | | | | | |
* E X E C U T I O N
d s s i s

20

Computing Edit Distance Cont.)
• Dynamic programming: A tabular computation of 𝐷(𝑛,𝑚)
• Solving problems by combining solutions to subproblems.
• Bottom up

• We compute 𝐷(𝑖, 𝑗) for small 𝑖, 𝑗
• And compute larger 𝐷(𝑖, 𝑗) based on previously computed smaller values
• i.e., compute 𝐷(𝑖, 𝑗) for all 𝑖 (0 < 𝑖 < 𝑛) and 𝑗 (0 < 𝑗 < 𝑚)

21

Defining Minimum Edit Distance (Levenshtein)
• Initialization

𝐷(𝑖, 0) = 𝑖
𝐷(0, 𝑗) = 𝑗

• Recurrence Relation:

For each i = 1…M

For each j = 1…N

D(i,j)= min

𝐷(𝑖 − 1, 𝑗) + 1
D(i,j−1) + 1

D(i−1,j−1) + 2
0 -

if X(i) ≠ Y(j)
if X(i) = Y(j)

• Termination:

D(N,M) is distance

22

Edit Distance Table – Example

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

23

Edit Distance Table – Example (Cont.)

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

D(i,j)= min

𝐷(𝑖 − 1, 𝑗) + 1
D(i,j−1) + 1

D(i−1,j−1) + 20 0
if w1(i) ≠ w2(j)
if w1(i) = w2(j)

24

Edit Distance Table – Example (Cont.)

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10
T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N 25

Atomic String Similarity – Gap Distance

§ Overcome limitation of edit distance with shortened strings
§ Considers two extra operations

à open gap, and extend gap (with small cost)

k n o w l e d g e

cost = 1 + o + 8e

a n d d a t a

k n o w l . d a t a

insert
open gap

extend gap

© E. Ioannou

26

Atomic String Similarity – Jaro Similarity

• Small strings, e.g., first and last names
• C is the set of common characters in 𝑆! and 𝑆"

• Two characters from 𝑆! and 𝑆" are considered common when they are the same and not
farther than #$%('! ,|'"|)" − 1 characters apart.

• T is the number transpositions/2
• 𝑐! and 𝑐" are a transposition if 𝑐! and 𝑐" are common but appear in different

orders in 𝑆! and 𝑆"
𝐽𝑎𝑟𝑜𝑆𝑖𝑚 𝑆., 𝑆/ =

1
3

𝐶
𝑆.

+
𝐶
𝑆/

+
𝐶 − 𝑇
𝐶 [Jar89]

• Example: “DEIS”vs. “DESI”

C=4, T=2/2, JaroSim= .
0

1
1
+ 1

1
+ 12.

1
= 0.9167

D E S I

D E I S

insert
delete

ED(DESI, DEIS) = 2

27

Atomic String Similarity

• Jaro-Winkler similarity [Win99]:
§ Extension that gives higher weight to matching prefix
§ Increasing it’s applicability to names
§ 𝐽$ 𝑆3, 𝑆4 = 𝐽𝑎𝑟𝑜𝑆𝑖𝑚 + 𝑃 ∗ 𝐿 ∗ (1 − 𝐽𝑎𝑟𝑜𝑆𝑖𝑚)
§ P is a scaling factor (0.1 by default)
§ L is the length of the common prefix up to maximum 4
§ Example: Compute 𝐽$ 𝑎𝑟𝑛𝑎𝑏, 𝑎𝑟𝑎𝑛𝑏

§ 𝐽𝑎𝑟𝑜𝑆𝑖𝑚 𝑎𝑟𝑛𝑎𝑏, 𝑎𝑟𝑎𝑛𝑏 = !
#

$
$
+ $

$
+ %

$
= 0.933

§ 𝐽& 𝑎𝑟𝑛𝑎𝑏, 𝑎𝑟𝑎𝑛𝑏 = 0.933 + 0.1 ∗ 2 ∗ 1 − 0.933 = 0.9466

28

Atomic String Similarity

• Soundex: A phonetic algorithm that indexes names by their
sounds when pronounced in English.
• Consists of the first letter of the name followed by three

numbers. Numbers encode similar sounding consonants.
• Remove all W, H
• B, F, P, V encoded as 1, C,G,J,K,Q,S,X,Z as 2
• D,T as 3, L as 4, M,N as 5, R as 6, Remove vowels
• Concatenate first letter of string with first 3 numerals

• Ex: great and grate become G6EA3 and G6A3E and then G630
• More recent, metaphone, double metaphone etc.

29

Similarity methods for sets

30

Similarity methods for sets

• Jaccard similarity/distance
• The Jaccard similarity of two sets is:

𝐽'() 𝐶!, 𝐶" =
𝐶! ∩ 𝐶"
𝐶! ∪ 𝐶"

• Jaccard distance: 𝐽*('+ = 1 − 𝐽'() 𝐶!, 𝐶" = 1 − ,!∩,"
,!∪,"

• Similarity between {a, b, c, d} and {a, b, e, f} = 2/6 = 1/3

• Jaccard bag similarity counts the repetition of the elements
• The similarity between {a,a,a,b} and {a,a,b,b,c} = 3/9 = 1/3

3 in intersection
7 in union

Jaccard similarity= 3/7
Jaccard distance = 4/7

Is 𝐽!"#$ a distance
measure?

31

Similarity methods for sets

• Sørensen Coefficient (also called Coefficient of Community CC)
• The Sørensen similarity of two sets is computed as:

𝐶𝐶 𝐶3, 𝐶4 = 4∗ D%∩D&
|D%|E|D&|

• Similarity between {a, b, c, d} and {a, b, e, f} = 4/8 = 1/2

• Gives more weight for the number of common elements

3 in intersection
5 in each set

Sørensen similarity= 6/10

32

Similarity methods for sets

• Tversky Index: a generalized form of Jaccard and Sørensen
• The Tversky Index of two sets is computed as:

𝑆 𝐶3, 𝐶4 = D%∩D&
D%∩D& EF|D%GD& EH D&GD%|

• 𝛼, 𝛽 ≥ 0
• 𝛼 = 𝛽 = 1 ⟹ Jaccard similarity
• 𝛼 = 𝛽 = 0.5 ⟹ Sørensen similarity

3 in intersection
2 in the difference
𝛼 = 0.2 & 𝛽 = 0.8

Tversky similarity= 3/5

33

Similarity methods for sets

• Overlap Coefficient: also called Szymkiewicz–Simpson coefficient
• It is defined as:

𝑂𝐶 𝐶3, 𝐶4 = D%∩D&
MNO(D% , D&)

3 in intersection
5 in each set

Overlap coefficient = 3/5

34

Case of Documents

35

A Common Metaphor

• Many problems can be expressed as
finding “similar” sets
• Find near-neighbors in high-dimensional space

• Examples:
• Pages with similar words

• For duplicate detection, classification by topic, plagiarism
• Customers who purchased similar products (e.g. Movies)
• Products with similar customer sets (e.g. fans)
• Images with similar features

• Users who visited similar websites

© J. Ullman et al.

36

Shingles

• A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc
• Tokens can be characters, words or something else, depending on the

application
• Assume tokens = characters for examples

• Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
• Option: Shingles as a bag (multiset), count ab twice: S’(D1) = {ab, bc, ca, ab}

© J. Ullman et al.

37

Similarity Metric for Shingles

• Represent document D1 as a set of its k-shingles C1=S(D1)
• Equivalently, each document is a

0/1 vector in the space of k-shingles
• Each unique shingle is a dimension
• Vectors are very sparse

• A natural similarity measure is the Jaccard similarity:

𝐽'() 𝐶*, 𝐶+ = ,%∩,&
,%∪,&

© J. Ullman et al.

38

Challenges for ER

• Variety – Semantic
• Semi-structured data → unprecedented levels of heterogeneity
• Numerous entity types & vocabularies
• LOD Cloud*: ~50,000 predicates, ~12,000 vocabularies

• Volume - Performance
• Millions of entities
• Billions of name-value pairs describing them
• LOD Cloud*: >5,5·107 entities, ~1,5·1011 triples
• Too many documents, Too few memory

© J. Ullman et al.

39

Motivation

• Suppose we need to find near-duplicate documents among
𝑵 = 𝟏 million documents

• Naïvely, we would have to compute pairwise
Jaccard similarities for every pair of docs
• 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons
• At 105 secs/day and 106 comparisons/sec,

it would take 5 days

• For 𝑵 = 𝟏𝟎 million, it takes more than a year…

© J. Ullman et al.

40

Find Pairs of Similar Documents

• Main idea: Candidates
• Instead of keeping a count of each pair, only keep a count

of candidate pairs!

• Pass 1: Take documents and hash them to buckets such that

documents that are similar hash to the same bucket

• Pass 2: Only compare documents that are candidates

(i.e., they hashed to a same bucket)

• Benefits: Instead of O(N2) comparisons, we need O(N)

comparisons to find similar documents

© J. Ullman et al.

41

42

How could we use hashing to convert a document to a Sparse Boolean

Vector (where each index represents a different word)?

43

Hash Tables: Basic Idea

• Use a key (arbitrary string or number) to index directly into an array –
O(1) time to access records
• A[“brand”] = “Ford”
• Need a hash function to convert the key to an integer

Key Data

0 brand ford

1 color orange

2 kiwi Australian fruit

44

Characteristics of a Good Hashing Function

• Returns an integer between 0 and the table size
• Efficiently computable
• Does not waste extra space
• At least one key is hashed to every integer between 0 and the table size
• Minimizes the collisions: the different keys that hash to the same

number

45

Examples of Hashing Functions

• For integer keys: 𝑥 is the key and 𝑚 is the table size
• ℎ! 𝑥 = 𝑥 %𝑚 (% is the modulus function)
• ℎ" 𝑥 = 𝑥 𝑥 + 3 %𝑚
• Multiplication hashing function

• Select 0 < 𝑐 < 1 and compute 𝑤 = 𝑥𝑐
• Take 𝑢 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑤
• ℎ+ 𝑥 = 𝑢𝑚

𝑥 ℎ#(𝑥) ℎ$(𝑥) ℎ%(𝑥)

36 6 9 12

51 6 9 4

8 8 13 6

18 3 3 6

9 9 3 10

47 2 10 1

𝑚 = 15, 𝑐 = 0.3

46

Examples of Hashing Functions

• For string keys: 𝑥 is the key and 𝑚 is the table size
• ℎ! 𝑥 = 𝑠𝑢𝑚 𝑎𝑠𝑐𝑖𝑖 𝑥[𝑖] % 𝑚, 0 ≤ 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)

• Problem: string with the same set of characters hash to the same number (`abc’,
`bca’, `acb’, …)

• Solution: consider the string to be integer with base 128
• ℎ' 𝑥 = 𝑠𝑢𝑚 𝑎𝑠𝑐𝑖𝑖 𝑥[𝑖] ∗ 128" %𝑚, 0 ≤ 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)

• Example: use ℎ*, ℎ+ to hash the strings ``abc”, ``acb” (table size 𝑚 = 15)
• ℎ! 𝑎𝑏𝑐 = 97 + 98 + 99 = 294 %15 = 9
• ℎ! 𝑎𝑐𝑏 = 294 %15 = 9
• ℎ" 𝑎𝑏𝑐 = 97 ∗ 128" + 98 ∗ 128 + 99 ∗ 1 %15 = 11
• ℎ" 𝑎𝑐𝑏 = 97 ∗ 128" + 99 ∗ 128 + 98 ∗ 1 %15 = 3

Finding similar documents requires more than simple

hashing functions

© J. Ullman et al.

47

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while
preserving similarity

3. Locality-Sensitive Hashing: Focus on pairs of signatures likely
to be from similar documents

• Candidate pairs!

© J. Ullman et al.

48

3 Essential Steps for Similar Docs

© J. Ullman et al.

ShinglingDocument

The set
of strings

of length k
that appear

in the
document

Min
Hashing

Signatures:
short integer
vectors that

represent the
sets, and

reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:

those pairs
of signatures
that we need

to test for
similarity

49

3 Essential Steps for Similar Docs

• Rows = elements (shingles)
• Columns = sets (documents)

• 1 in row e and column s if and only if e is a member of s
• Column similarity is the Jaccard similarity of the

corresponding sets (rows with value 1)
• Typical matrix is sparse!

• Each document is a column:
• Example: 𝑱𝒔𝒊𝒎 𝑪𝟏, 𝑪𝟐 = ?

• Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6

© J. Ullman et al.

0101

0111

1001

1000

1010
1011

0111

Documents

S
hi
ng
le
s

50

Finding Similar Columns

• So far:
• Documents ® Sets of shingles
• Represent sets as Boolean vectors in a matrix

• Next goal: Find similar columns while computing small
signatures
• Similarity of columns ≈ similarity of signatures

© J. Ullman et al.

51

Hashing

• Key idea: “hash” each column C to a small signature h(C), such
that:

(1) h(C) is small enough that the signature fits in RAM
(2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

• Goal: Find a hash function h(·) such that:
• If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
• If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

• Hash docs into buckets. Expect that “most” pairs of near
duplicate docs hash into the same bucket!

© J. Ullman et al.

52

Min-Hashing

• Imagine the rows of the Boolean matrix permuted under
random permutation p

• Define a “hash” function hp(C) = the index of the first (in the
permuted order p) row in which column C has value 1:

hp (C) = minp p(C)

• Use several (e.g., 100) independent hash functions (i.e.,
permutations) to create a signature of a column

© J. Ullman et al.

53

Min-Hashing Example

© J. Ullman et al.

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation
is the first to map to a 1

4th element of the permutation
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation p

54

Similarity of Signatures

• Clearly: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
• Now generalize to multiple hash functions

• The similarity of two signatures is the fraction of the hash
functions in which they agree

• Note: Because of the Min-Hash property, the similarity of
columns is the same as the expected similarity of their
signatures

© J. Ullman et al.

55

LSH for Min-Hash

• Big idea: Hash columns of signature matrix M several times

• Arrange that (only) similar columns are likely to hash to the
same bucket, with high probability

• Candidate pairs are those that hash to the same bucket

• (Blocking)

© J. Ullman et al.

56

Standard Blocking

Algorithm:
1. Select the most appropriate attribute name(s) w.r.t. noise and

distinctiveness.
2. Transform the corresponding value(s) into a Blocking Key (BK)
3. For each BK, create one block that contains all entities having

this BK in their transformation.

Works as a hash function! → Blocks on the equality of BKs

© J. Ullman et al.

[Fellegi et. al., JASS 1969]

57

Standard Blocking – Example

© J. Ullman et al.

Blocks on zip_code:
58

Thank you for your attention!

Questions?

Disclaimer: Much of the material presented originates from a number of different presentations and
courses of the following people: Yannis Velegrakis (Utrecht University), Jeff Ullman (Stanford
University), Bill Howe (U of Washington), Martin Fouler (Thought Works), Ekaterini Ioannou (Tilburg
University), Themis Palpanas (U of Paris-Descartes). Copyright stays with the authors. No distribution is
allowed without prior permission by the authors. 59

Additional References
• [Jar89] M. A. Jaro: Advances in record linkage methodology as applied to matching the 1985 census of

Tampa, Florida. Journal of the American Statistical Association 84: 414-420.

• [Win99] William E. Winkler: The state of record linkage and current research problems. IRS publication
R99/04 (http://www.census.gov/srd/www/byname.html)

• Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of the American Statistical
Association, 64(328):1183–1210.

• [Lev66] Levenshtein, Vladimir I. (February 1966). "Binary codes capable of correcting deletions, insertions,
and reversals". Soviet Physics Doklady. 10 (8): pp. 707–710.

• [Vel09] Rizzolo, F., Velegrakis, Y., Mylopoulos, J., Bykau, S. (2009). Modeling Concept Evolution: A Historical
Perspective. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds) Conceptual
Modeling - ER 2009. ER 2009. Lecture Notes in Computer Science, vol 5829. Springer, Berlin, Heidelberg.

• [Elm07] A. K. Elmagarmid, P. G. Ipeirotis and V. S. Verykios, "Duplicate Record Detection: A Survey," in IEEE
Transactions on Knowledge and Data Engineering, vol. 19, no. 1, pp. 1-16, Jan. 2007.

• [Don15]

60

http://www.census.gov/srd/www/byname.html

• Summarize what you
learned today in 2-minutes

61

Next lecture

• Process Discovery
• Conformance Checking

© Utrecht University

The information in this presentation has been compiled with the utmost care,
but no rights can be derived from its contents.

DISCLAIMER

62

