
Hakim Qahtan
Part of the slides were prepared by

Yannis Velegrakis

Department of Information and Computing Sciences
Utrecht University

Data Wrangling and Data Analysis

Integrity Constraints + Database Design

Reading Material
for Today
Database System Concepts (7th Edition)

CH 3.2.1, 4.4, 6.1, 6.2

2

Integrity Constraints

3

Integrity Constraints

• A constraint is a relationship among data elements that the DBMS is
required to enforce
• Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the database do not
result in a loss of data consistency.
• Examples:

• Checking that an account must have a balance greater than $1.00
• A salary of a bank employee must be at least $4.00 an hour
• A customer must have a (non-null) phone number

4

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database; e.g.,
domain constraints.
• ICs are specified when schema is defined.
• ICs are checked when relations are modified.

• A legal instance of a relation is one that satisfies all specified ICs.
• DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is more faithful to real-world
meaning.
• Avoids data entry errors, too!

5

Where do ICs Come From?
• ICs are based upon the semantics of the real-world enterprise that is

being described in the database relations.

• We can check a database instance to see if an IC is violated, but we can
NEVER infer that an IC is true by looking at an instance.
• An IC is a statement about all possible instances!
• From example, we know name is not a key, but the assertion that id is a key is

given to us.

• Key and foreign key ICs are the most common; more general ICs
supported too.

6

Kinds of Integrity Constraints

• Value-based
• Primary key
• Foreign-key, or referential-integrity
• Tuple-based

7

Value-Based Constraints – Data Types

• Specify the type of the data that can be entered in a specific field
CREATE TABLE test (

id INTEGER PRIMARY KEY,
full_name VARCHAR(30), -- allocates a space for up to 30 characters
dept_code CHAR(3), -- allocates a space for exactly 3 characters
dept_name VARCHAR(100) -- allocates up to 100 characters

);
Test the database with the following queries

INSERT INTO test
VALUES ('kk', 'JH', 'CS', 'Computer Science')

INSERT INTO test
VALUES (123, 'JH', 'CS', 'Computer Science')

8

Basic Data Types in SQL

• CHAR(n) allocates a space for exactly X characters
• VARCHAR(n) allocates a space for up to X characters
• INT or INTEGER stores integer values
• SMALLINT stores integer values
• NUMERIC(p,d) numerical values with total p digits (plus a sign)

• Out of the p digits, d are after the decimal point

• REAL stores floating point numbers with double precision
• FLOAT(n) stores floating point numbers with double precision

9

Basic Data Types in SQL

• CHAR(n) and VARCHAR(n)
• CHAR(n) allocates a space for exactly `n’ characters – if the value is shorter, the

remaining spaces are filled with the `space’ character
• VARCHAR(n) allocates a space for up to `n’ characters – allocation is done during

the runtime.

10

Value-Based Constraints – Data Types (Cont.)

• Most DBMSs use dynamic typing
• Data of any type can (usually) be inserted into any column
• You can put arbitrary length strings into integer columns, floating point

numbers in Boolean columns, or dates in character columns
• Columns of type INTEGER/NUMERIC PRIMARY KEY cannot accept

string
• Error message will be printed if you try to put string into an INTEGER

PRIMARY KEY column
• If you put floating point value, some DBMSs store the integer part
Test the database with the following query
INSERT INTO test
VALUES (3.14, 'JH', 'CS', ‘Computer Science')

11

Primary Key Constraints

• A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all key fields, and
2. This is not true for any subset of the key.
• Part 2 false? A superkey.
• If thereʼs >1 key for a relation, one of the keys is chosen (by DBA) to be the primary

key.

• E.g., sid is a key for Students. (What about name?) The set {sid, gpa}
is a superkey.

12

Single attribute key
• Use the PRIMARY KEY key or UNIQUE after the type in the declaration

of the attribute
• Example:
CREATE TABLE test (

sid INTEGER UNIQUE,
name VARCHAR (30),
major VARCHAR (30)

);

• You may also use sid INTEGER PRIMARY KEY

13

Multiattribute key
• You can also specify multiple attributes to be PRIMARY KEY
• product_name and country of origin are the key for the sells relation
• Example:
CREATE TABLE sells (

product_name CHAR(20),
price REAL,
country_of_origin VARCHAR (30),
PRIMARY KEY (product_name, country_of_origin)

);

14

Primary and Candidate Keys in SQL – What Could Go Wrong?

• Possibly many candidate keys (specified using UNIQUE),
one of which is chosen as the primary key.

CREATE TABLE Enrolled
(sid CHAR(20)

cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

o “For a given student and course,
there is a single grade.” vs.
“Students can take only one
course and receive a single grade
for that course; further, no two
students in a course receive the
same grade.”

o Used carelessly, an IC can
prevent the storage of database
instances that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)

cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),

UNIQUE (cid, grade))
15

Foreign Keys, Referential Integrity

• Foreign key: Set of fields in one relation that is used to `referʼ to a tuple
in another relation. (Must correspond to primary key of the second
relation.) Like a `logical pointerʼ.
• Let A be a set of attributes (could be one attribute).
• Let R and S be two relations that contain attributes A
• A is the primary key of S.
• A is said to be a foreign key in R if for any r in R, r(A) in S.

• E.g. sid is a foreign key referring to Students:
• Enrolled(sid: string, cid: string, grade: string)
• If all foreign key constraints are enforced, referential integrity is achieved, i.e., no

dangling references.
16

Foreign Keys in SQL

• Only students listed in the Students relation should be allowed
to enroll for courses.

CREATE TABLE Enrolled
(esid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (esid,cid),
FOREIGN KEY (esid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

esid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Referenced
attributes must

be PRIMARY
KEY or UNIQUE
in the original
table (relation)

17

Foreign Keys – The University Database Example

dept_name is a foreign key in each of the course, student and instructor relations

student
ID

name
dept_name
tot_cred

takes
ID

course_id
sec_id

semester
year
Grade advisor

s_id
i_id

department
dept_name
building
budget

course
course_id

title
dept_name
credits

section
course_id
sec_id

semester
year

Building
room_no

time_slot_id instructor
ID

name
dept_name

salary
prereq

course_id
prereq_id

teaches
ID

course_id
sec_id

semester
year

classroom
building
room_no
capacity

18

Enforcing Referential Integrity

• Consider Students and Enrolled; sid in Enrolled is a foreign key that
references Students.
• What should be done if an Enrolled tuple with a non-existent student id

is inserted? (Reject it!)
• What should be done if a Students tuple is deleted?
• Similar if primary key of Students tuple is updated.

19

Referential Integrity in SQL

• SQL/92 and SQL:1999 support all 4 options on
deletes and updates.
• Default is NO ACTION (delete/update is

rejected)
• CASCADE (Make the same changes to all tuples

that refer to the updated/deleted tuple)
• SET NULL / SET DEFAULT (sets foreign key value of

referencing tuple to NULL or a default value)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),

FOREIGN KEY (sid)
REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET DEFAULT)

20

Foreign Keys Violations – Actions to Consider – Cascade

• Delete the Mathematics department from department
• Then delete all tuples from course that have dept_name = ‘Mathematics’

• Update the Mathematics tuple by changing the ‘Mathematics’ to
‘Math’
• Then change all records in course with dept_name = ‘Mathematics’ to

dept_name = ‘Math’

• Example:

UPDATE course
SET dept_name = 'Math'
WHERE dept_name = ‘Mathematics';

UPDATE department
SET dept_name = 'Math'
WHERE dept_name = 'Mathematics';

21

Foreign Keys Violations – Actions to Consider – Set NULL

• Delete the Mathematics tuple from department:
• Change all tuples of course that have dept_name = ’Mathematics’ to have

dept_name = NULL.

• Update the Mathematics tuple by changing Mathematics’ to ‘Math’:
• Same change as for deletion.

• Example:

UPDATE course
SET dept_name = NULL
WHERE dept_name = ‘Mathematics';

DELETE FROM department
WHERE dept_name = 'Mathematics';

UPDATE department
SET dept_name = 'Math'
WHERE dept_name = 'Mathematics';

22

The check clause

• Defines constraints on the values of a particular attribute.
• Syntax: CHECK(<condition>)
• The condition may use the name of the attribute, but any other

relation or attribute name must be in a subquery.

23

The check clause
• Example: ensure that semester is one of Fall, Winter, Spring or

Summer and year is greater than 1990:
CREATE TABLE section (

course_id VARCHAR (8),
sec_id VARCHAR (8) NOT NULL,
semester VARCHAR (6) CHECK (semester IN ('Fall', 'Winter', 'Spring',

'Summer')),
year NUMERIC (4,0) CHECK (year > 1990),
building VARCHAR (15),
room_number VARCHAR (7),
time_slot_id VARCHAR (4),
PRIMARY KEY (course_id, sec_id, semester, year)

);
24

Tuple-Based Check
• CHECK (<condition>) may be added as a relation-schema element.
• The condition may refer to any attribute of the relation.

• But other attributes or relations require a subquery.
• Checked on insert or update only.

CREATE TABLE section (
course_id VARCHAR (8),
sec_id VARCHAR (8) NOT NULL,
semester VARCHAR (6),
year NUMERIC (4,0),
building VARCHAR (15),
room_number VARCHAR (7),
time_slot_id VARCHAR (4),
PRIMARY KEY (course_id, sec_id, semester, year),
CHECK (semester IN ('Fall', 'Winter', 'Spring', 'Summer') AND (year > 1990))

);
25

Timing of Checks

• Attribute-based checks are performed only when a value for that
attribute is inserted or updated.
• Example: CHECK (year >= 1990) checks every new year and rejects the

modification (for that tuple) if the year is before 1990

26

Complex Check Clauses

• CHECK (time_slot_id IN (SELECT time_slot_id FROM time_slot))
• why not use a foreign key here?

• Every section has at least one instructor teaching the section.
• how to write this?

• Unfortunately: subquery in check clause not supported by a lot of
database management systems

27

NOT NULL
• NOT NULL

• Declare name and budget to be NOT NULL
name VARCHAR(20) NOT NULL
budget NUMERIC(12,2) NOT NULL

28

Logical Database Design

29

DB Design

• A mechanism (methodology) for ensuring that each relation in the
database is good.
• Entity-Relationship model

• Models an organization (enterprise) as a set of entities and relationships
• Represented using ER-diagram

• Normalization theory
• Formalize what is a bad design

30

Entities

• An entity: an existing “object” that is distinguishable from other objects
• Example: Specific person, product, event, plant

• Entity set: a set of entities that share the same properties
• Set of students, plants, activities, trees

• An entity is represented by a set of attributes
• students = (ID, name, dept_name, tot_cred).

• Each entity should differ from the others in at least a value of one
attribute

31

Relationships

• A relationship: an association between several entities
• Robin is an Advisor of Mark
• Tom works in the ICS department
• Fred is enrolled in INFOMDWR

• A relationship set is a set of relationships of the same type
• Advisor = {(Robin, Advisor of, Mark), (Katz, advisor of, Shankar), (Lola, advisor of,

Tim)}

32

ER-Diagram

• An entity is represented as a rectangle
• A relationship is represented as a diamond

Student
ID
name
dept_name
tot_cred

Instructor
ID
name
dept_name
salary

Advisor

Course
Course_id
title
dept_name
credits

prereq

prereq_id
course_id

33

Relationship Cardinality

Student
ID
name
dept_name
tot_cred

Instructor
ID
name
dept_name
salary

Advisor

Student
ID
name
dept_name
tot_cred

Instructor
ID
name
dept_name
salary

Advisor

Arrows represent 1-1 relationship
• A student can have at most one advisor
• An instructor can supervise at most one

student

Line-Arrow represent many-1 relationship
• A student can have zero or more advisors
• An instructor can supervise at most one

student

34

Relationship Cardinality

Student
ID
name
dept_name
tot_cred

Instructor
ID
name
dept_name
salary

Advisor

Student
ID
name
dept_name
tot_cred

Instructor
ID
name
dept_name
salary

Advisor

Arrow-Line represent 1-many relationship
• A student can have at most one advisor
• An instructor can supervise zero or

more students

Lines represent many-many relationship
• A student can have zero or more advisors
• An instructor can supervise zero or more

students

35

Logical DB Design: Entities as Tables

CREATE TABLE Student
(id CHAR(20),
name CHAR(20),
dept_name CHAR(20),
tot_cred INTEGER,
PRIMARY KEY (id)

);
Student

id
name dept_name

tot_cred

36

Logical DB Design: Relationships as Tables

• A many-many relationship between two
entities is expressed as a stand-alone
table that is linked to the entities through
foreign keys.

• That table has a Foreign Key referencing
each PK in the tables of the entities to
which it is linked, plus some additional
descriptive attributes.

• The Primary Key of the table is the union
of the Primary Keys in the participating
entities

CREATE TABLE takes(
id CHAR(20),
course_id VARCHAR(7),
sec_id VARCHAR(8),
semester VARCHAR(6),
year numeric(4,0),
Grade numeric(2,1),
PRIMARY KEY (id, course_id, sec_id,

semester, year),
FOREIGN KEY (id) REFERENCES student,
FOREIGN KEY (course_id, sec_id, semester,

year) REFERENCES section
);

37

Examples of Relationships as Tables

• Since each department has a
unique manager, we could
instead combine Manages and
Departments.

CREATE TABLE Manages(
i_id CHAR(11),
dept_name CHAR(20),
since DATE,
d_id CHAR (11) PRIMARY KEY,
FOREIGN KEY (i_id) REFERENCES instructor,
FOREIGN KEY (d_id) REFERENCES department)

CREATE TABLE Dept_Mgr(
d_id CHAR(11),
dept_name CHAR(20),
budget REAL,
i_id CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (i_id) REFERENCES instructor)

• Manage relationship

38

Primary Keys for Relationships in the Relational Models

• For 1-1 relationship, one of the primary keys of the participating

entities can be considered as the primary key of the relationship

• For 1-many and many-1 relationships, the primary of many entity is

considered as the primary key of the relationship

• For many-many, the primary key of the relationship is the union of the

attributes in the primary keys of the participating entities

What are the options to define these kinds of relationships?

39

The ISA Hierarchy example

• Entity hierarchies: called class
hierarchies organize a group of entity
sets into a parent/child hierarchy using
as criterion their generality/specificity

• Overlap Constraints: specify that the
children of an entity do/don’t overlap
e.g. Hourly_Inst/Contract_Inst don’t
overlap whereas cartoons and drama
overlap in movies database

Contract_Inst

name
id

Instructor

Hourly_wage
ISA

Hourly_Inst

Salary

Hours_worked

dept_name

40

The ISA Hierarchy example

• Covering Constraints: instances of the
children of an entity include all
instances of their parent (i.e., cover it).
• Hourly_Inst and Contract_Inst cover

all instances from the super class
Instructor

Contract_Inst

name
id

Instructor

Hourly_wage
ISA

Hourly_Inst

Salary

Hours_worked

dept_name

41

Translating ISA Hierarchies to Relations

• General approach:
• 3 relations: Instructor, Hourly_Inst and Contract_inst.

• Hourly_Inst: Every employee is recorded in Instructor.

• For hourly instructors, extra info recorded in Hourly_Inst
(hourly_wages, hours_worked, id); must delete Hourly_Inst
tuple if referenced Instructor tuple is deleted).

• Queries involving all instructors easy, those involving just
Hourly_Inst require a join to get some attributes.

42

Translating ISA Hierarchies to Relations

• Alternative: Just Hourly_Inst and Contract_Inst.
• Hourly_Inst: id, name, dept_name, hourly_wages, hours_worked.

• Contract_Inst: id, name, dept_name, salary.

• Each instructor must be in one of these two subclasses (Coverage).

43

Views

• A view is just a relation, but we store a definition,
rather than a set of tuples.

CREATE VIEW ActiveStudents (name, grade)
AS SELECT S.name, T.grade
FROM Students S, takes T
WHERE S.id = T.id and S.tot_cred < 31

• Views can be dropped using the DROP VIEW command.
• How to handle DROP TABLE if there’s a view on the table?

• DROP TABLE command has options to let the user specify this.

44

Views and Security

• Views can be used to present necessary information (or a

summary), while hiding details in underlying relation(s).

• Given `ActiveStudents’, but not `student’ or `takes’, we can find

students who are enrolled, but not the course_idʼs of the courses

they are taking.

45

Relational Model: Summary

• A tabular representation of data.
• Simple and intuitive, currently the most widely used.
• Integrity constraints can be specified by the DBA, based on

application semantics. DBMS checks for violations.
• Two important ICs: primary and foreign keys
• In addition, we always have domain constraints.

46

Thank You

• Summarize what you learned
today in 2-minutes

47

Next lecture

• Process Discovery
• Conformance Checking

© Utrecht University

The information in this presentation has been compiled with the utmost care,
but no rights can be derived from its contents.

DISCLAIMER

48

