Hakim Qahtan

Department of Information and Computing Sciences

* Utrecht University
Utrecht University

Outlines

* So Far
* Data types

e Structured, semi-structured and unstructured

Data Models

* Relational model and entity-relationship model

* Graphs and trees
* Objects
Data model components

* Data, structure, semantics, and operations

Databases vs file systems
DDL and DML
Creating and modifying tables (relations) in SQL

<

% Y § Utrecht University

AN

Outlines

* Today

* Operations on databases
* Relational algebra
* SQL

AWy
§ § = Utrecht University

N

SEVENTH EDITION

Database System Concepts

Reading Materia
for Today

Database System Concepts (7t Edition)
CH2.6,3.3-3.8.

A

>

N

Utrecht University

Relational Algebra

N

Utrecht University

Relational Algebra Operators

* Union U, intersection N, difference —
 Selection o

* Projection

* Join X

* Rename p

* Duplicate elimination &
* Grouping and aggregation y

* Sorting T

N
§ N % Utrecht University

N

——

S—

RA

Remember: a
relation is a set
of records

Extended RA

S—

Union

r
A | B
a 3
B 2

Sy

£ U S Utrecht University

N

ryus
S
A B
a 1
B 2
14 3

rus

{RIA X ™ R
w w N R

Intersection

r
A | B
a 3
B 2

N
§ v % Utrecht University

N

rnNs
S
A B
a 1
5 2
14 3

Difference

r—S
r S r—S
RSN RN A | B
a 3 a 1 a 3
B 2 B 2
14 3

Can you find an expression that is equivalent to 7 — s using the
operators N and ~?

N
§ U§ Utrecht University

N

Selection

O(a=B) A(D>5) (1)

r
A | B | C | A | B | C | D
a a 1 7

a a 1 7

a p 5 7 B p 23 10
B B 12 3

p p 23 10

N
§ v % Utrecht University

N

Projection

r
A | B |

a a 1 7
a p 5 7
B B 12 3
B p 23 10

R .
£ 8 F Utrecht University

N

11

Join

Cartesian Product

r
A | B
a 3
B 2

N
§ v % Utrecht University

N

S
¢ | b
a 1
5 2
14 3

WD ™" ™ K KR R

N N N W W W

rXs

(@]

X ®W R X ™®W R

W N P W N R

12

Join

Cartesian Product

r
A | B
a 3
B 2

N
§ v % Utrecht University

N

S
A | c
a 1
5 2
14 3

WD ™" ™ K KR R

N N N W W W

rXs

X ®W R X ™®W R

(@]

W N P W N R

13

<My

Rename

Rename operation p, (E) returns the output of the expression E
under the name x

r rXPs (7‘)

=D ™ KR R
N N W W
=N KR ™ R
N W N W

£ 8 F Utrecht University

N

14

Natural Join

* Let r and s be relations on schemas R and S, respectively.

* Natural join of relations R and S is a relation on schema R U S
obtained as follows:

* Consider each pair of tuples t,- from r and t; from s.

* If t,. and t; have the same value on each of the attributesin RN S, add a
tuple t to the result, where
* t has the samevalueast, onr
* t has the samevalueast; ons

NI
£ U = Utrecht University

N

Natural Join — Example

r
S r XS
NEEE B A B |C D E
a 1 a a 1 a a a 1 a a a
5 2 y a 3 a B a 1 a a y
y 4 B b 1 a y a 1 y a a
a 1 vy a 2 b é a 1 y a y
6 2 B b 3 b € é 2 B b 6

¥ ™ S =TarpcrpE(Orp=sBrrp=sp (I'XS))

R
£ 8 F Utrecht University

N

16

Composition of Operations

XS Or.A= sA(rXS)
IIII nn | rA | B | SA | sB | lﬂﬂﬂﬂ
a 3 a 1
B 2 B 2 a 3 B 2 B 2 B 2
Y 3 a 3 Y 3
p 2 a 1
B 2 B 2
B 2 y 3
\\Wifé 17

7 (V) ﬂ: Utrecht Unive ty
KN

Summary of Relational Algebra Operators

Symbol (name)

o (Selection) Return rows of the input relation that satisty a predicate.

7 (Projection) Return specified attributes from all rows of the input relation.
Remove duplicate tuples from the output.

X (Cartesian Return pairs of rows from the fwo input relations.
Product)
U (Union) Return the union of tuples from the two input relations.

— (Difference) = Return the set of records that exist in the relation before the
operator(-) but not in the relation after the operator.

N (Intersection) Return the common tuples in both input relations.

X (Natural Join) Return pairs of rows from the two input relations that have the
same value on all attributes that have the same name.

. p (Rename) Returns the outcome of an expression under the specified name
£o2 18

= § F Utrecht University

N

Remarks on RA

e Each Query input is a table (or set of tables)
* Each query output is a table.
* All data in the output table appears in one of the input tables

* Can we compute:

* SUM YSuM(tot_credit) (student)
* AVG YavG (salary)(instructor)

* MAX YMAx(buget)(department)

* MIN YMIN(budget)(department)
* COUNT VCOUNT(tot_creditzlz)(StUdent)

* GROUPBY 4ept name Yava(satary)(instructor)

N
§ N % Utrecht University

N

19

NI

Data Extraction Using Structured Query Language (SQL)

= § F Utrecht University

N

N

20

SELECT-FROM-WHERE Statements

SELECT desired attributes
FROM one or more tables
WHERE condition about tuples of the tables

= N F Utrecht University

N

21

Remember Our Main Database?

<My
=NV=

N

Utrecht University

takes
ID
course_id
sec_id
section semester
course_id year
secid [— Grade
semester =
year a course
Building course_id
room_no title
time_slot_id dept_name
teaches credits
classroom ID
| puildin course id
room no sec_id
capacity —| semester
year

student
ID
name
dept_name
tot_cred
aavisor
department s_id
dept_name i_id
building
budget
instructor
ID
name
prereq dept_name
course _id salary
prereq_id

22

<My

Example: The SELECT Clause

* Get the IDs, names and total credits of students who completed at least 24
credits

SELECT ID, name, tot_cred
FROM student
WHERE tot_cred >= 24;

* The answer is a relation with three attributes (ID, name, tot_cred)
* What if we need only the names of the students?

* Note that: the SQL operator names are case insensitive SELECT = Select =
select

= N F Utrecht University

N

23

The SELECT Clause

* Lists the desired attributes in the result of the query
* Corresponds to the projection operator of the relational algebra

* SQL allows duplicates in relations as well as in query results
* To force the elimination of duplicates, use the keyword DISTINCT after select

* Example: find the department names of all instructors whose salary is strictly
greater than 60000 without showing the department name more than once

SELECT DISTINCT dept_name
FROM instructor
WHERE salary > 60000

NI
£ U = Utrecht University

N

The SELECT Clause (Cont.)

* The keyword ALL specifies that duplicates should not be removed

SELECT ALL dept_name

FROM instructor
WHERE salary > 60000

 An asterisk in the SELECT clause denotes “all attributes”
SELECT * FROM instructor

will return all the records from table “instructor”

N
% Y % Utrecht University
N

The SELECT Clause (Cont.)

* An attribute could be literal with no FROM clause
SELECT ’542’
Results in a relation with one column and one row with value 542’
We can also give the column a name using
SELECT ’542’ AS V1
* An attribute could be a literal with FROM clause
SELECT ‘A’ FROM instructor

will return a relation with one column and N rows (the number of tuples in
the ‘instructor ’ relation) where each row will contain the value “A”

N
AN

N
(4
N

The SELECT Clause (Cont.)

* SELECT clause can contain arithmetic expressions involving the operations *,
+, -, and /.
SELECT ID, name, salary/12.0

FROM instructor

This query would return a relation with the same number of records as the
‘instructor’ relation and the (ID, name, salary/12.0) where the yearly salary

is replaced by the monthly salary
We can rename the “salary/12.0” using the AS clause

SELECT ID, name, salary/12.0 as monthly_salary
FROM instructor

Utrecht University

The WHERE Clause

* Specifies conditions that the result must satisfy
* Corresponds to the selection predicate of the relational algebra

* To find all students enrolled in the ‘Math.” department
SELECT ID, name FROM student
WHERE dept_name = ‘Math.
* Conditions can be also combined using logical operators (AND, OR, NOT)

* Find all students in the ‘Math. department who completed a minimum of 24 credits
SELECT ID, name FROM student
WHERE dept_name = ‘Math.” AND tot_cred >= 24
e Comparisons =, <>, <, >, <=, >=

AWy
§ § = Utrecht University

N

The FROM Clause

* Lists the relations involved in the query
» Corresponds to the Cartesian product operation of the relational algebra

* Find the Cartesian product ’instructor’ X ’ teaches’

SELECT * FROM instructor, teaches

* Generates every possible instructor — teaches pair, with all attributes from both
relations.

* For common attributes (e.g., ID), the attributes in the resulting table are renamed
using the relation name (e.g., instructor.ID)
e Similar to the cartesian product in RA

* Cartesian product not very useful directly, but useful when combined with
where-clause condition.

<

= N F Utrecht University

N

SELECT-FROM-WHERE Examples

SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID

Returns the names of all instructors who have taught any courses and
the course_id

SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID AND instructor.dept_name = ‘Art’

Returns the names of all instructors in the Art department who have
taught any courses and the course _id

AWy
§ § = Utrecht University

N

The Rename Operation

* SQL allows renaming relations and attributes using the AS clause:

old-name AS new-name

* Find the names of all instructors who have a higher salary than

some instructor in ‘Comp. Sci’.

SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary >= 75000 AND S.dept_name = ‘Comp. Sci.’

Returns the names of instructors in the ‘Comp. Sci.” department joined with
whose salary is greater than or equal 75000

* Keyword AS is optional and may be omitted
instructor AS T = instructor T

AWy
§ § = Utrecht University

N

Renaming Example: Self-Join

* Sometimes, a query needs to use two copies of the same relation.
* Distinguish copies by renaming the relations.

* Example self-Join

SELECT T.name AS N1, S.name AS N2
FROM instructor T, instructor S
WHERE T.salary = S.salary AND T.name < S.name

e Returns the names of instructors who has the same salary

* Do not produce pairs like (Miller, Miller)
* Produces pairs in alphabetic order, e.g. (Adison, Miller), not (Miller, Adison)

* Note that we omit AS when renaming the relations

NI
£ U = Utrecht University

N

Join Operation

* JOIN operations take two relations and return as a result another
relation.

* A join operation is a Cartesian product which requires that tuples in
the two relations match (under some condition). It also specifies the
attributes that are present in the result of the join

* The join operations are typically used as subquery expressions in the
FROM clause

NI
£ U = Utrecht University

N

Join Operation (Cont.)

* We will consider the following relations in the few coming slides

* Relation course

course_id title dept_name credits
BIO-301 Genetics Biology 4
CS-490 Game Design Comp. Sci. 4
CS-315 Boolean Algebra Comp. Sci. 3
* Relation prereq e Note that:
course_id prereq_id e prereq information is missing for
BIO-301 BIO-101 course C5-315
CS-490 CS-101 e course information is missing for
CS-347 €S-201 course CS-347

N
§ N % Utrecht University 36

N

Outer Join

* An extension of the join operation that avoids loss of information.

* Computes the join and then adds tuples form one relation that does
not match tuples in the other relation to the result of the join.

e Uses null values.

NI
£ U = Utrecht University

N

Left Outer Join

SELECT *
FROM course

LEFT OUTER JOIN prereq

ON course.course_id = prereg.course_id

course_id title dept_name credits prereq_id
BIO-301 Genetics Biology 4 BIO-101
CS-490 Game Design Comp. Sci. 4 CS-101
CS-315 Boolean Algebra Comp. Sci. 3 null

R
£ 8 F Utrecht University

N

Right Outer Join

SELECT *
FROM course

RIGHT OUTER JOIN prereq

ON course.course_id = prereg.course_id

course_id prereq_id title dept_name credits
BIO-301 BIO-101 Genetics Biology 4
CS-490 CS-101 Game Design Comp. Sci. 4
CS-347 CS-201 null null null

* Remember:

* The order of the attributesin a
<y relation has no meaning .

=N § Utrecht University

N

Full Outer Join

SELECT *
FROM course

FULL OUTER JOIN prereq

ON course.course_id = prereg.course_id

course_id prereq_id title dept_name credits
BIO-301 BIO-101 Genetics Biology 4
CS-490 CS-101 Game Design Comp. Sci. 4
CS-347 CS-201 null null null
CS-315 null Boolean Algebra Comp. Sci. 3

R
£ 8 F Utrecht University

N

Inner Join

SELECT *
FROM course

INNER JOIN prereq

ON course.course_id = prereg.course_id

course_id prereq_id title dept_name credits
BIO-301 BIO-101 Genetics Biology 4
CS-490 CS-101 Game Design Comp. Sci. 4
* An SQL INNER JOIN is same as JOIN clause
* Question:

 What is the difference between the above JOIN and
the right/left outer join

N2
§ N % Utrecht University

N

String Operations

* SQL includes a string-matching operator for comparisons on character
strings.

* The operator LIKE uses patterns that are described using two special
characters
* Percent (%). The % character matches any substring.
e Underscore (_). The _ character matches any character.

* Example: find the names of all instructors whose name includes the
substring “Van der”

SELECT DISTINCT name
FROM instructor WHERE name LIKE ‘%Van der%’

NI
£ U = Utrecht University

N

String Operations (Cont.)

e Match the string “100%”
LIKE ‘100 \%' ESCAPE '\
in that above we use backslash (\) as the escape character

e Patterns are case sensitive.

e Pattern matching examples:
* ‘Intro%’ matches any string beginning with “Intro”.
* “%Comp%’ matches any string containing “Comp” as a substring.
 * " matches any string of exactly three characters.
* * % matches any string of at least three characters.

NI
£ U = Utrecht University

N

Range Queries

* SQL includes a BETWEEN comparison operator

 Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, > $90,000 and < $100,000)

SELECT name
FROM instructor
WHERE salary BETWEEN 90000 AND 100000

AWy
§ § = Utrecht University

N

<My

Tuple Comparison

SELECT name, course_id
FROM instructor, teaches
WHERE (instructor.ID, dept_name) = (teaches.ID, ‘Biology’)

= N F Utrecht University

N

45

Set Operations

* Find courses that ran in Fall 2009 or in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
UNION
SELECT course_id FROM section WHERE sem = ‘Spring” AND year = 2010
* Find courses that ran in Fall 2009 and in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall” AND year = 2009
INTERSECT
SELECT course_id FROM section WHERE sem = ‘Spring” AND year = 2010
* Find courses that ran in Fall 2009 but not in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall” AND year = 2009

EXCEPT
SELECT course_id FROM section WHERE sem = ‘Spring” AND year = 2010

N
§ N % Utrecht University

N

46

Null Values

* It is possible for tuples to have a null value, denoted by NULL, for
some of their attributes

* null signifies an unknown value or that a value does not exist.

* The result of any arithmetic expression involving NULL is NULL
e Example: 5+ NULL returns NULL

* The predicate IS NULL can be used to check for null values.
* Example: Find all instructors whose salary is null.

SELECT name
FROM instructor
WHERE salary IS NULL

AWy
§ § = Utrecht University

N

Null Values and Three Valued Logic

* Three values — true, false, unknown

e Any comparison with null returns unknown
e Example: 5<null or null<>null or null =null

* Three-valued logic using the value unknown:

* OR: (unknown OR true) = true,
(unknown OR false) = unknown
(unknown OR unknown) = unknown

* AND: (true AND unknown) = unknown,
(false AND unknown) = false,
(unknown AND unknown) = unknown

* NOT: (NOT unknown) = unknown
* “P is unknown” evaluates to true if predicate P evaluates to unknown

* Result of WHERE clause predicate is treated as false if it evaluates to
unknown

N
§ N % Utrecht University 48

N

The IN Operator

e <v> IN <S> evaluates to true if the value v matches one of the values
in S.
* It can be used to replace a sequence of conditions connected by OR

* Example:

SELECT name
FROM instructor
WHERE dept_name IN ('Comp. Sci/, "Math., 'Chem.’);

This Query is equivalent to:

SELECT name
FROM instructor
WHERE dept_name =’Comp. Sci.” OR dept_name ="Math.” OR dept_name =

‘Chem.

AWy
§ § = Utrecht University

N

Wrap-Up

e Summarize what
you learned
today in 2-
minutes

= ¥ F Utrecht University
K

50

:§\.
%

N4

&

%

= Utrecht University DISCLAIMER

=

The information in this presentation has been compiled with the utmost care,

but no rights can be derived from its contents.

© Utrecht University

N

N

Boolean Operators — Revision

Utrecht University

52

Boolean Operators

» Searching through a database or search engine can often be
frustrating

* Boolean Operators create relationships between concepts and terms
for better search results

* Most popular Boolean operators are AND, OR and NOT
* The red areas represent the results of the operators

ol BC N N

AAND B AORB A AND NOT(B)

N
; N % Utrecht University
N

AND (A)

1 1 1 Theredarea— (AAB)
1 0 0
0 1 0 : :
. . . * Retrieves only records that satisfy both
conditions
* Example:

name = “Taylor” AND dept name = “Chem.”

Returns all instructors in the Chem. department
whose name is Taylor

N
§ N % Utrecht University

N

OR (V)

1 1 1
1 0 1 * Retrieves records that satisfy one of the
0 1 1 conditions
0 0 0
* Example:

name = “Taylor” OR dept name = “Chem.”

Returns all instructors with the name Taylor and
all instructors of the Chem. department

N
§ N % Utrecht University

U

A ~A
. 0 The red area— A AND NOT(B)
0 1

* Retrieves only records that satisfy the first
condition and doesn’t satisfy the second

* Example:
name = “Taylor” AND
NOT dept_name = “Chem.”

Returns all instructors with the name Taylor who
do not work in the Chem. department

N
§ N % Utrecht University

N

56

Boolean Equivalence

* Equivalence of two Boolean operations can be easily proven using
truth tables

* Equivalence of Boolean operations is useful for optimizing the
Boolean queries

+ Examples: A4 B (AAB) ~(AAB) ~AV~B

- ~(AAB) =~ AV~ B

O = | O |k
=)
N =)

1 1
1 0
0 0
0 0

*(ANB)A~B=ANAN(BA~B) = false
*(AANAB)V(~BACO)VANCO)V~ (ANC)=(ANC)V~ (ANC) = true

N
§ N :é Utrecht University 57

N

Proving Boolean Equivalence

* Truth Table: Helpful when the number of statements in the Boolean
expression is small

* Proof by contradiction: assume the expression is false/true and proof
that it leads to contradiction

e Using the Boolean axioms.

NI
£ U = Utrecht University

N

Boolean Axioms

* Let T and F represent the cases of always True and always False

«(TAT)=T
«(FAF)=F
«(TVT) =T
«(FVF)=F

*(TANF)=(FAT)=F
e (TVF)=(FVT)=T
T=F
T

=~

NI
£ U = Utrecht University

N

Boolean Axioms

* Commutativity
*(ANB)=(BNA)
s (AvB)=(BVA)

* |dentity
s (ANT)=A
s (AVT) =T
s (ANF)=F
c(AVF)=A4

NI
£ U = Utrecht University

N

Boolean Axioms

* |[dempotent

- (ANA) =A
- (AVA) =4
* Involution
cA=A
* Complement
« (ANA)=F
c (AVA) =T

AWy
§ § = Utrecht University

N

Boolean Axioms

* Associativity
c(ANB)ANC=AN(BAC)
c(AvB)vC=Av(BVCO)

* Distributivity
c AN(BVC)=(AANB)V(ANCO)
cAV(BANC)=(AVB)AN(AV)

NI
£ U = Utrecht University

N

Proving Boolean Equivalence

* Using the Boolean axioms (Example):
* prove that: (AAB)V(~AAC)V(BAC) =(AAB)V(~AAC)

* LHS=(AAB)V(~AANC)V(BAC)=(AAB)V(~AANC)V[(BAC)AT]
(AANAB)V(~AANC)V[(BAC)AN(AV ~A)]
(AAB)V(~AANC)V[(BACNANA)V(BACA~A)]
[(AAB)V(BACANA)]VI(~AANC)V(BACAN~A)]
[AAB)A(TVC)]VI(~AANC)A(TVB)]
[(AAB)]V[(~AAC)]=RHS

* T means always TRUE.

Read more FROM
John Kelly, The Essence of Logic (Prentice Hall, 1997)
Chapter 1 is good enough

<

% Y § Utrecht University

AN

