
Hakim Qahtan

Department of Information and Computing Sciences
Utrecht University

Data Wrangling and Data Analysis

Data Extraction 1

Outlines

• So Far
• Data types

• Structured, semi-structured and unstructured

• Data Models
• Relational model and entity-relationship model
• Graphs and trees
• Objects

• Data model components
• Data, structure, semantics, and operations

• Databases vs file systems
• DDL and DML
• Creating and modifying tables (relations) in SQL

2

Outlines

• Today
• Operations on databases

• Relational algebra
• SQL

3

Database System Concepts (7th Edition)
CH 2.6, 3.3 – 3.8.

Reading Material
for Today

4

Relational Algebra

5

Relational Algebra Operators

• Union ∪, intersection ∩, difference −
• Selection 𝜎
• Projection 𝜋
• Join ⋈
• Rename 𝜌

• Duplicate elimination 𝛿
• Grouping and aggregation 𝛾
• Sorting 𝜏

RA

Extended RA

Remember: a
relation is a set

of records

6

Union

𝑟 ∪ 𝑠

A B

𝛼 3

𝛽 2

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
A B

𝛼 1

𝛽 2

𝛾 3

𝛼 3

𝑟 ∪ 𝑠

7

Intersection

𝑟 ∩ 𝑠

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
A B

𝛽 2

𝑟 ∩ 𝑠
A B

𝛼 3

𝛽 2

8

Difference

𝑟 − 𝑠

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
A B

𝛼 3

𝑟 − 𝑠
A B

𝛼 3

𝛽 2

Can you find an expression that is equivalent to 𝑟 − 𝑠 using the
operators ∩ and ~?

9

Selection

𝜎("#$) ∧('()) (𝑟)𝑟
A B C D

𝛼 𝛼 1 7

𝛼 𝛽 5 7

𝛽 𝛽 12 3

𝛽 𝛽 23 10

A B C D

𝛼 𝛼 1 7

𝛽 𝛽 23 10

10

Projection

𝜋",+(𝑟)𝑟
A B C D

𝛼 𝛼 1 7

𝛼 𝛽 5 7

𝛽 𝛽 12 3

𝛽 𝛽 23 10

A C

𝛼 1

𝛼 5

𝛽 12

𝛽 23

11

Join

Cartesian Product

𝑟
C D

𝛼 1

𝛽 2

𝛾 3

𝑠
A B C D

𝛼 3 𝛼 1

𝛼 3 𝛽 2

𝛼 3 𝛾 3

𝛽 2 𝛼 1

𝛽 2 𝛽 2

𝛽 2 𝛾 3

𝑟×𝑠
A B

𝛼 3

𝛽 2

12

Join

Cartesian Product

𝑟
A C

𝛼 1

𝛽 2

𝛾 3

𝑠
r.A B s.A C

𝛼 3 𝛼 1

𝛼 3 𝛽 2

𝛼 3 𝛾 3

𝛽 2 𝛼 1

𝛽 2 𝛽 2

𝛽 2 𝛾 3

𝑟×𝑠
A B

𝛼 3

𝛽 2

13

Rename

Rename operation 𝜌!(𝐸) returns the output of the expression 𝐸
under the name 𝑥

𝑟
r.A r.B s.A s.B

𝛼 3 𝛼 3

𝛼 3 𝛽 2

𝛽 2 𝛼 3

𝛽 2 𝛽 2

𝑟×𝜌,(𝑟)
A B

𝛼 3

𝛽 2

14

Natural Join

• Let 𝑟 and 𝑠 be relations on schemas 𝑅 and 𝑆, respectively.

• Natural join of relations 𝑅 and 𝑆 is a relation on schema 𝑅 ∪ 𝑆
obtained as follows:
• Consider each pair of tuples t$ from 𝑟 and t% from 𝑠.
• If t$ and t% have the same value on each of the attributes in 𝑅 ∩ 𝑆, add a

tuple 𝑡 to the result, where
• 𝑡 has the same value as 𝑡! on 𝑟
• 𝑡 has the same value as 𝑡" on 𝑠

15

Natural Join – Example

𝑟

B D E

1 a 𝛼
3 a 𝛽

1 a 𝛾
2 b 𝛿

3 b 𝜖

𝑠
A B C D E

𝛼 1 𝛼 a 𝛼
𝛼 1 𝛼 a 𝛾

𝛼 1 𝛾 a 𝛼
𝛼 1 𝛾 a 𝛾

𝛿 2 𝛽 b 𝛿

𝑟 ⋈ 𝑠
A B C D

𝛼 1 𝛼 a

𝛽 2 𝛾 a

𝛾 4 𝛽 b

𝛼 1 𝛾 a

𝛿 2 𝛽 b

𝑟 ⋈ 𝑠 ≡ 𝜋",-.$,+,-.',/(𝜎-.$#,.$∧-.'#,.' (𝑟×𝑠))

16

Composition of Operations

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
r.A r.B s.A s.B

𝛼 3 𝛼 1

𝛼 3 𝛽 2

𝛼 3 𝛾 3

𝛽 2 𝛼 1

𝛽 2 𝛽 2

𝛽 2 𝛾 3

𝑟×𝑠
A B

𝛼 3

𝛽 2

r.A r.B s.A s.B

𝛼 3 𝛼 1

𝛽 2 𝛽 2

𝜎-."#,." (𝑟×𝑠)

17

Summary of Relational Algebra Operators
Symbol (name) Description
𝜎 (Selection) Return rows of the input relation that satisfy a predicate.
𝜋 (Projection) Return specified attributes from all rows of the input relation.

Remove duplicate tuples from the output.
× (Cartesian

Product)
Return pairs of rows from the two input relations.

∪ (Union) Return the union of tuples from the two input relations.
− (Difference) Return the set of records that exist in the relation before the

operator(-) but not in the relation after the operator.
∩ (Intersection) Return the common tuples in both input relations.
⋈ (Natural Join) Return pairs of rows from the two input relations that have the

same value on all attributes that have the same name.
𝜌 (Rename) Returns the outcome of an expression under the specified name

18

Remarks on RA

• Each Query input is a table (or set of tables)

• Each query output is a table.

• All data in the output table appears in one of the input tables

• Can we compute:
• SUM 𝛾!"#(%&%_()*+,%)(𝑠𝑡𝑢𝑑𝑒𝑛𝑡)
• AVG 𝛾./0(1232)4)(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)
• MAX 𝛾#.5(678*%)(𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)

• MIN 𝛾#9:(67+8*%)(𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)
• COUNT 𝛾;<":=(%&%_()*+,%>?@)(𝑠𝑡𝑢𝑑𝑒𝑛𝑡)
• GROUP BY +*A%_B2C* 𝛾./0(1232)4)(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)

19

Data Extraction Using Structured Query Language (SQL)

20

SELECT-FROM-WHERE Statements

SELECT desired attributes
FROM one or more tables
WHERE condition about tuples of the tables

21

Remember Our Main Database?

student
ID

name
dept_name
tot_cred

takes
ID

course_id
sec_id

semester
year
Grade advisor

s_id
i_id

department
dept_name
building
budget

course
course_id

title
dept_name
credits

section
course_id
sec_id

semester
year

Building
room_no

time_slot_id instructor
ID

name
dept_name

salary
prereq

course_id
prereq_id

teaches
ID

course_id
sec_id

semester
year

classroom
building
room_no
capacity

22

Example: The SELECT Clause

• Get the IDs, names and total credits of students who completed at least 24
credits

SELECT ID, name, tot_cred
FROM student
WHERE tot_cred >= 24;

• The answer is a relation with three attributes (ID, name, tot_cred)
• What if we need only the names of the students?
• Note that: the SQL operator names are case insensitive SELECT ≡ Select ≡

select

23

The SELECT Clause

• Lists the desired attributes in the result of the query
• Corresponds to the projection operator of the relational algebra

• SQL allows duplicates in relations as well as in query results
• To force the elimination of duplicates, use the keyword DISTINCT after select
• Example: find the department names of all instructors whose salary is strictly

greater than 60000 without showing the department name more than once

SELECT DISTINCT dept_name
FROM instructor
WHERE salary > 60000

24

The SELECT Clause (Cont.)

• The keyword ALL specifies that duplicates should not be removed

SELECT ALL dept_name
FROM instructor
WHERE salary > 60000

• An asterisk in the SELECT clause denotes “all attributes”
SELECT * FROM instructor
will return all the records from table “instructor”

25

The SELECT Clause (Cont.)

• An attribute could be literal with no FROM clause
SELECT ’542’
Results in a relation with one column and one row with value ‘’542’
We can also give the column a name using

SELECT ’542’ AS V1
• An attribute could be a literal with FROM clause

SELECT ‘A’ FROM instructor
will return a relation with one column and N rows (the number of tuples in
the ‘instructor ’ relation) where each row will contain the value “A”

26

The SELECT Clause (Cont.)

• SELECT clause can contain arithmetic expressions involving the operations *,
+, -, and /.
SELECT ID, name, salary/12.0
FROM instructor
This query would return a relation with the same number of records as the
‘instructor’ relation and the (ID, name, salary/12.0) where the yearly salary
is replaced by the monthly salary
We can rename the “salary/12.0” using the AS clause
SELECT ID, name, salary/12.0 as monthly_salary
FROM instructor

27

The WHERE Clause

• Specifies conditions that the result must satisfy
• Corresponds to the selection predicate of the relational algebra

• To find all students enrolled in the ‘Math.’ department
SELECT ID, name FROM student
WHERE dept_name = ‘Math.’

• Conditions can be also combined using logical operators (AND, OR, NOT)
• Find all students in the ‘Math.’ department who completed a minimum of 24 credits

SELECT ID, name FROM student
WHERE dept_name = ‘Math.’ AND tot_cred >= 24

• Comparisons =, <>, <, >, <=, >=
28

The FROM Clause

• Lists the relations involved in the query
• Corresponds to the Cartesian product operation of the relational algebra

• Find the Cartesian product ’ instructor’ X ’ teaches’
SELECT * FROM instructor, teaches
• Generates every possible instructor – teaches pair, with all attributes from both

relations.
• For common attributes (e.g., ID), the attributes in the resulting table are renamed

using the relation name (e.g., instructor.ID)
• Similar to the cartesian product in RA

• Cartesian product not very useful directly, but useful when combined with
where-clause condition.

29

SELECT-FROM-WHERE Examples

SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID
Returns the names of all instructors who have taught any courses and
the course_id
SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID AND instructor.dept_name = ‘Art’
Returns the names of all instructors in the Art department who have
taught any courses and the course_id

30

The Rename Operation

• SQL allows renaming relations and attributes using the AS clause:
old-name AS new-name

• Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary >= 75000 AND S.dept_name = ‘Comp. Sci.’
Returns the names of instructors in the ‘Comp. Sci.’ department joined with

whose salary is greater than or equal 75000

• Keyword AS is optional and may be omitted
instructor AS T ≡ instructor T

31

Renaming Example: Self-Join

• Sometimes, a query needs to use two copies of the same relation.
• Distinguish copies by renaming the relations.
• Example self-Join

SELECT T.name AS N1, S.name AS N2
FROM instructor T, instructor S
WHERE T.salary = S.salary AND T.name < S.name
• Returns the names of instructors who has the same salary
• Do not produce pairs like (Miller, Miller)
• Produces pairs in alphabetic order, e.g. (Adison, Miller), not (Miller, Adison)

• Note that we omit AS when renaming the relations

32

Join Operation

• JOIN operations take two relations and return as a result another
relation.
• A join operation is a Cartesian product which requires that tuples in

the two relations match (under some condition). It also specifies the
attributes that are present in the result of the join
• The join operations are typically used as subquery expressions in the

FROM clause

35

Join Operation (Cont.)

• We will consider the following relations in the few coming slides
• Relation course

course_id title dept_name credits

BIO-301 Genetics Biology 4

CS-490 Game Design Comp. Sci. 4

CS-315 Boolean Algebra Comp. Sci. 3

• Relation prereq
course_id prereq_id

BIO-301 BIO-101

CS-490 CS-101

CS-347 CS-201

• Note that:
• prereq information is missing for

course CS-315
• course information is missing for

course CS-347

36

Outer Join

• An extension of the join operation that avoids loss of information.
• Computes the join and then adds tuples form one relation that does

not match tuples in the other relation to the result of the join.
• Uses null values.

37

Left Outer Join
SELECT *
FROM course
LEFT OUTER JOIN prereq
ON course.course_id = prereq.course_id

course_id title dept_name credits prereq_id

BIO-301 Genetics Biology 4 BIO-101

CS-490 Game Design Comp. Sci. 4 CS-101

CS-315 Boolean Algebra Comp. Sci. 3 null

38

Right Outer Join

SELECT *
FROM course
RIGHT OUTER JOIN prereq
ON course.course_id = prereq.course_id

course_id prereq_id title dept_name credits

BIO-301 BIO-101 Genetics Biology 4

CS-490 CS-101 Game Design Comp. Sci. 4

CS-347 CS-201 null null null

• Remember:
• The order of the attributes in a

relation has no meaning 39

Full Outer Join

SELECT *
FROM course
FULL OUTER JOIN prereq
ON course.course_id = prereq.course_id

course_id prereq_id title dept_name credits

BIO-301 BIO-101 Genetics Biology 4

CS-490 CS-101 Game Design Comp. Sci. 4

CS-347 CS-201 null null null

CS-315 null Boolean Algebra Comp. Sci. 3

40

Inner Join

SELECT *
FROM course
INNER JOIN prereq
ON course.course_id = prereq.course_id

course_id prereq_id title dept_name credits

BIO-301 BIO-101 Genetics Biology 4

CS-490 CS-101 Game Design Comp. Sci. 4

• An SQL INNER JOIN is same as JOIN clause
• Question:

• What is the difference between the above JOIN and
the right/left outer join

41

String Operations

• SQL includes a string-matching operator for comparisons on character
strings.
• The operator LIKE uses patterns that are described using two special

characters
• Percent (%). The % character matches any substring.
• Underscore (_). The _ character matches any character.

• Example: find the names of all instructors whose name includes the
substring “Van der”

SELECT DISTINCT name
FROM instructor WHERE name LIKE ‘%Van der%’

42

String Operations (Cont.)

• Match the string “100%”
LIKE ‘100 \%’ ESCAPE '\'

in that above we use backslash (\) as the escape character
• Patterns are case sensitive.
• Pattern matching examples:

• ‘Intro%’ matches any string beginning with “Intro”.
• ‘%Comp%’ matches any string containing “Comp” as a substring.
• ‘_ _ _’ matches any string of exactly three characters.
• ‘_ _ _ %’ matches any string of at least three characters.

43

Range Queries

• SQL includes a BETWEEN comparison operator
• Example: Find the names of all instructors with salary between

$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)
SELECT name
FROM instructor
WHERE salary BETWEEN 90000 AND 100000

44

Tuple Comparison

SELECT name, course_id
FROM instructor, teaches
WHERE (instructor.ID, dept_name) = (teaches.ID, ‘Biology’)

45

Set Operations

• Find courses that ran in Fall 2009 or in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
UNION
SELECT course_id FROM section WHERE sem = ‘Spring’ AND year = 2010

• Find courses that ran in Fall 2009 and in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
INTERSECT
SELECT course_id FROM section WHERE sem = ‘Spring’ AND year = 2010

• Find courses that ran in Fall 2009 but not in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
EXCEPT
SELECT course_id FROM section WHERE sem = ‘Spring’ AND year = 2010

46

Null Values

• It is possible for tuples to have a null value, denoted by NULL, for
some of their attributes
• null signifies an unknown value or that a value does not exist.
• The result of any arithmetic expression involving NULL is NULL

• Example: 5 + NULL returns NULL

• The predicate IS NULL can be used to check for null values.
• Example: Find all instructors whose salary is null.

SELECT name
FROM instructor
WHERE salary IS NULL

47

Null Values and Three Valued Logic
• Three values – true, false, unknown
• Any comparison with null returns unknown

• Example: 5 < null or null <> null or null = null
• Three-valued logic using the value unknown:

• OR: (unknown OR true) = true,
(unknown OR false) = unknown
(unknown OR unknown) = unknown

• AND: (true AND unknown) = unknown,
(false AND unknown) = false,
(unknown AND unknown) = unknown

• NOT: (NOT unknown) = unknown
• “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of WHERE clause predicate is treated as false if it evaluates to
unknown

∧ 𝑻 𝑭 𝑼

𝑻 T F U

𝑭 F F F

𝑼 U F U

∨ 𝑻 𝑭 𝑼

𝑻 T T T

𝑭 T F U

𝑼 T U U

48

The IN Operator
• <v> IN <S> evaluates to true if the value v matches one of the values

in S.
• It can be used to replace a sequence of conditions connected by OR
• Example:

SELECT name
FROM instructor
WHERE dept_name IN (’Comp. Sci.’, ’Math.’, ’Chem.’);

This Query is equivalent to:
SELECT name
FROM instructor
WHERE dept_name = ’Comp. Sci.’ OR dept_name = ’Math.’ OR dept_name =
’Chem.’

49

Wrap-Up

• Summarize what
you learned
today in 2-
minutes

50

Next lecture

• Process Discovery
• Conformance Checking

© Utrecht University

The information in this presentation has been compiled with the utmost care,
but no rights can be derived from its contents.

DISCLAIMER

51

Boolean Operators – Revision

52

Boolean Operators

• Searching through a database or search engine can often be
frustrating
• Boolean Operators create relationships between concepts and terms

for better search results
• Most popular Boolean operators are AND, OR and NOT

• The red areas represent the results of the operators

𝐴 𝐵 𝐴 𝐴𝑁𝐷 𝐵 𝐴 𝑂𝑅 𝐵 𝐴 𝐴𝑁𝐷 𝑁𝑂𝑇(𝐵)

53

AND (∧)

The red area – (𝐴 ∧ 𝐵)

• Retrieves only records that satisfy both
conditions

• Example:
name = “Taylor” AND dept_name = “Chem.”
Returns all instructors in the Chem. department
whose name is Taylor

𝑨 𝑩 𝑨 ∧ 𝑩

1 1 1

1 0 0

0 1 0

0 0 0

A B

54

OR (∨)

The red area – (𝐴 ∨ 𝐵)

• Retrieves records that satisfy one of the
conditions

• Example:
name = “Taylor” OR dept_name = “Chem.”
Returns all instructors with the name Taylor and
all instructors of the Chem. department

𝑨 𝑩 𝑨 ∨ 𝑩

1 1 1

1 0 1

0 1 1

0 0 0

A B

55

NOT (∼)

The red area – 𝐴 𝐴𝑁𝐷 𝑁𝑂𝑇(𝐵)

• Retrieves only records that satisfy the first
condition and doesn’t satisfy the second

• Example:
name = “Taylor” AND
NOT dept_name = “Chem.”
Returns all instructors with the name Taylor who
do not work in the Chem. department

𝑨 ∼ 𝑨

1 0

0 1

A B

56

Boolean Equivalence

• Equivalence of two Boolean operations can be easily proven using
truth tables
• Equivalence of Boolean operations is useful for optimizing the

Boolean queries
• Examples:

• ∼ (𝑨 ∧ 𝑩) ≡∼ 𝑨 ∨∼ 𝑩

• (𝑨 ∧ 𝑩) ∧∼ 𝑩 ≡ 𝑨 ∧ (𝑩 ∧∼ 𝑩) ≡ 𝒇𝒂𝒍𝒔𝒆
• (𝑨 ∧ 𝑩) ∨ (∼ 𝑩 ∧ 𝑪) ∨ (𝑨 ∧ 𝑪) ∨∼ (𝑨 ∧ 𝑪) ≡ (𝑨 ∧ 𝑪) ∨∼ (𝑨 ∧ 𝑪) ≡ 𝒕𝒓𝒖𝒆

𝑨 𝑩 (𝑨 ∧ 𝑩) ∼ (𝑨 ∧ 𝑩) ∼ 𝑨 ∨∼ 𝑩

1 1 1 0 0

1 0 0 1 1

0 1 0 1 1

0 0 0 1 1

≡

57

Proving Boolean Equivalence

• Truth Table: Helpful when the number of statements in the Boolean
expression is small
• Proof by contradiction: assume the expression is false/true and proof

that it leads to contradiction
• Using the Boolean axioms.

58

Boolean Axioms

• Let 𝑻 and 𝑭 represent the cases	of	always	True	and	always	False
• 𝑻 ∧ 𝑻 = 𝑻
• 𝑭 ∧ 𝑭 = 𝑭
• 𝑻 ∨ 𝑻 = 𝑻
• 𝑭 ∨ 𝑭 = 𝑭
• 𝑻 ∧ 𝑭 = 𝑭 ∧ 𝑻 = 𝑭
• 𝑻 ∨ 𝑭 = 𝑭 ∨ 𝑻 = 𝑻
• <𝑻 = 𝑭
• <𝑭 = 𝑻

59

Boolean Axioms

• Commutativity
• 𝑨 ∧ 𝑩 = 𝑩 ∧ 𝑨
• 𝑨 ∨ 𝑩 = 𝑩 ∨ 𝑨

• Identity
• 𝑨 ∧ 𝑻 = 𝑨
• 𝑨 ∨ 𝑻 = 𝑻
• 𝑨 ∧ 𝑭 = 𝑭
• 𝑨 ∨ 𝑭 = 𝑨

60

Boolean Axioms

• Idempotent
• 𝑨 ∧ 𝑨 = 𝑨
• 𝑨 ∨ 𝑨 = 𝑨

• Involution
• <<𝑨 = 𝑨

• Complement
• 𝑨 ∧ <𝑨 = 𝑭
• 𝑨 ∨ <𝑨 = 𝑻

61

Boolean Axioms

• Associativity
• 𝑨 ∧ 𝑩 ∧ 𝑪 = 𝑨 ∧ 𝑩 ∧ 𝑪
• 𝑨 ∨ 𝑩 ∨ 𝑪 = 𝑨 ∨ 𝑩 ∨ 𝑪

• Distributivity
• 𝑨 ∧ 𝑩 ∨ 𝑪 = 𝑨 ∧ 𝑩 ∨ 𝑨 ∧ 𝑪
• 𝑨 ∨ 𝑩 ∧ 𝑪 = 𝑨 ∨ 𝑩 ∧ 𝑨 ∨ 𝑪

62

Proving Boolean Equivalence

• Using the Boolean axioms (Example):
• prove that:

• LHS = 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ 𝐵 ∧ 𝐶 = 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ [𝐵 ∧ 𝐶 ∧ 𝑻]
= 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ [𝐵 ∧ 𝐶 ∧ 𝐴 ∨ ~𝐴]
= 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ [𝐵 ∧ 𝐶 ∧ 𝐴 ∨ 𝐵 ∧ 𝐶 ∧ ~𝐴]
= 𝐴 ∧ 𝐵 ∨ 𝐵 ∧ 𝐶 ∧ 𝐴 ∨ ∼ 𝐴 ∧ 𝐶 ∨ 𝐵 ∧ 𝐶 ∧ ~𝐴
= 𝐴 ∧ 𝐵 ∧ 𝑻 ∨ 𝐶 ∨ ∼ 𝐴 ∧ 𝐶 ∧ 𝑻 ∨ 𝐵
= 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 = RHS

• 𝑻 means always TRUE.

(𝐴 ∧ 𝐵) ∨ (∼ 𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶) = (𝐴 ∧ 𝐵) ∨ (∼ 𝐴 ∧ 𝐶)

63

Read more FROM
John Kelly, The Essence of Logic (Prentice Hall, 1997)

Chapter 1 is good enough

64

