
Hakim Qahtan

Department of Information and Computing Sciences
Utrecht University

Data Wrangling and Data Analysis

Data Extraction

Outlines

• So Far
• Data types

• Structured, semi-structured and unstructured

• Data Models
• Relational model and entity-relationship model
• Graphs and trees
• Objects

• Data model components
• Data, structure, semantics, and operations

• Databases vs file systems
• DDL and DML
• Creating and modifying tables (relations) in SQL

Outlines

• Today
• Operations on databases

• Relational algebra
• SQL

Database System Concepts (7th Edition)
CH 2.6, 3.3 – 3.8.

Reading Material
for Today

Relational Algebra

Relational Algebra Operators

• Union ∪, intersection ∩, difference −
• Selection 𝜎
• Projection 𝜋
• Join ⋈
• Rename 𝜌

• Duplicate elimination 𝛿
• Grouping and aggregation 𝛾
• Sorting 𝜏

RA

Extended RA

Remember: a
relation is a set

of records

Union

𝑟 ∪ 𝑠

A B

𝛼 3

𝛽 2

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
A B

𝛼 1

𝛽 2

𝛾 3

𝛼 3

𝑟 ∪ 𝑠

Intersection

𝑟 ∩ 𝑠

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
A B

𝛽 2

𝑟 ∩ 𝑠
A B

𝛼 3

𝛽 2

Difference

𝑟 − 𝑠

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
A B

𝛼 3

𝑟 − 𝑠
A B

𝛼 3

𝛽 2

Can you find an expression that is equivalent to 𝑟 − 𝑠 using the
operators ∩ and ~?

Selection

𝜎("#$) ∧('()) (𝑟)𝑟
A B C D

𝛼 𝛼 1 7

𝛼 𝛽 5 7

𝛽 𝛽 12 3

𝛽 𝛽 23 10

A B C D

𝛼 𝛼 1 7

𝛽 𝛽 23 10

Projection

𝜋",+(𝑟)𝑟
A B C D

𝛼 𝛼 1 7

𝛼 𝛽 5 7

𝛽 𝛽 12 3

𝛽 𝛽 23 10

A C

𝛼 1

𝛼 5

𝛽 12

𝛽 23

Join

Cartesian Product

𝑟
C D

𝛼 1

𝛽 2

𝛾 3

𝑠
A B C D

𝛼 3 𝛼 1

𝛼 3 𝛽 2

𝛼 3 𝛾 3

𝛽 2 𝛼 1

𝛽 2 𝛽 2

𝛽 2 𝛾 3

𝑟×𝑠
A B

𝛼 3

𝛽 2

Join

Cartesian Product

𝑟
A C

𝛼 1

𝛽 2

𝛾 3

𝑠
r.A B s.A C

𝛼 3 𝛼 1

𝛼 3 𝛽 2

𝛼 3 𝛾 3

𝛽 2 𝛼 1

𝛽 2 𝛽 2

𝛽 2 𝛾 3

𝑟×𝑠
A B

𝛼 3

𝛽 2

Rename

Rename operation 𝜌!(𝐸) returns the output of the expression 𝐸
under the name 𝑥

𝑟
r.A r.B s.A s.B

𝛼 3 𝛼 3

𝛼 3 𝛽 2

𝛽 2 𝛼 3

𝛽 2 𝛽 2

𝑟×𝜌,(𝑟)
A B

𝛼 3

𝛽 2

Natural Join

• Let 𝑟 and 𝑠 be relations on schemas 𝑅 and 𝑆, respectively.

• Natural join of relations 𝑅 and 𝑆 is a relation on schema 𝑅 ∪ 𝑆
obtained as follows:
• Consider each pair of tuples t$ from 𝑟 and t% from 𝑠.
• If t$ and t% have the same value on each of the attributes in 𝑅 ∩ 𝑆, add a

tuple 𝑡 to the result, where
• 𝑡 has the same value as 𝑡! on 𝑟
• 𝑡 has the same value as 𝑡" on 𝑠

Natural Join – Example

𝑟

B D E

1 a 𝛼
3 a 𝛽

1 a 𝛾
2 b 𝛿

3 b 𝜖

𝑠
A B C D E

𝛼 1 𝛼 a 𝛼
𝛼 1 𝛼 a 𝛾

𝛼 1 𝛾 a 𝛼
𝛼 1 𝛾 a 𝛾

𝛿 2 𝛽 b 𝛿

𝑟 ⋈ 𝑠
A B C D

𝛼 1 𝛼 a

𝛽 2 𝛾 a

𝛾 4 𝛽 b

𝛼 1 𝛾 a

𝛿 2 𝛽 b

𝑟 ⋈ 𝑠 ≡ 𝜋",-.$,+,-.',/(𝜎-.$#,.$∧-.'#,.' (𝑟×𝑠))

Composition of Operations

𝑟
A B

𝛼 1

𝛽 2

𝛾 3

𝑠
r.A r.B s.A s.B

𝛼 3 𝛼 1

𝛼 3 𝛽 2

𝛼 3 𝛾 3

𝛽 2 𝛼 1

𝛽 2 𝛽 2

𝛽 2 𝛾 3

𝑟×𝑠
A B

𝛼 3

𝛽 2

r.A r.B s.A s.B

𝛼 3 𝛼 1

𝛽 2 𝛽 2

𝜎-."#,." (𝑟×𝑠)

Summary of Relational Algebra Operators
Symbol (name) Description
𝜎 (Selection) Return rows of the input relation that satisfy a predicate.
𝜋 (Projection) Return specified attributes from all rows of the input relation.

Remove duplicate tuples from the output.
× (Cartesian

Product)
Return pairs of rows from the two input relations.

∪ (Union) Return the union of tuples from the two input relations.
− (Difference) Return the set of records that exist in the relation before the

operator(-) but not in the relation after the operator.
∩ (Intersection) Return the common tuples in both input relations.
⋈ (Natural Join) Return pairs of rows from the two input relations that have the

same value on all attributes that have the same name.
𝜌 (Rename) Returns the outcome of an expression under the specified name

Remarks on RA

• Each Query input is a table (or set of tables)

• Each query output is a table.

• All data in the output table appears in one of the input tables

• Can we compute:
• SUM 𝛾!"#(%&%_()*+,%)(𝑠𝑡𝑢𝑑𝑒𝑛𝑡)
• AVG 𝛾./0(1232)4)(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)
• MAX 𝛾#.5(678*%)(𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)

• MIN 𝛾#9:(67+8*%)(𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)
• COUNT 𝛾;<":=(%&%_()*+,%>?@)(𝑠𝑡𝑢𝑑𝑒𝑛𝑡)
• GROUP BY +*A%_B2C* 𝛾./0(1232)4)(𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)

Data Extraction Using Structured Query Language (SQL)

SELECT-FROM-WHERE Statements

SELECT desired attributes
FROM one or more tables
WHERE condition about tuples of the tables

Remember Our Main Database?

student
ID

name
dept_name
tot_cred

takes
ID

course_id
sec_id

semester
year
Grade advisor

s_id
i_id

department
dept_name
building
budget

course
course_id

title
dept_name
credits

section
course_id
sec_id

semester
year

Building
room_no

time_slot_id instructor
ID

name
dept_name

salary
prereq

course_id
prereq_id

teaches
ID

course_id
sec_id

semester
year

classroom
building
room_no
capacity

Example: The SELECT Clause

• Get the IDs, names and total credits of students who completed at least 24
credits

SELECT ID, name, tot_cred
FROM student
WHERE tot_cred >= 24;

• The answer is a relation with three attributes (ID, name, tot_cred)
• What if we need only the names of the students?
• Note that: the SQL operator names are case insensitive SELECT ≡ Select ≡

select

The SELECT Clause

• Lists the desired attributes in the result of the query
• Corresponds to the projection operator of the relational algebra

• SQL allows duplicates in relations as well as in query results
• To force the elimination of duplicates, use the keyword DISTINCT after select
• Example: find the department names of all instructors whose salary is strictly

greater than 60000 without showing the department name more than once

SELECT DISTINCT dept_name
FROM instructor
WHERE salary > 60000

The SELECT Clause (Cont.)

• The keyword ALL specifies that duplicates should not be removed

SELECT ALL dept_name
FROM instructor
WHERE salary > 60000

• An asterisk in the SELECT clause denotes “all attributes”
SELECT * FROM instructor
will return all the records from table “instructor”

The SELECT Clause (Cont.)

• An attribute could be literal with no FROM clause
SELECT ’542’
Results in a relation with one column and one row with value ‘’542’
We can also give the column a name using

SELECT ’542’ AS V1
• An attribute could be a literal with FROM clause

SELECT ‘A’ FROM instructor
will return a relation with one column and N rows (the number of tuples in
the ‘instructor ’ relation) where each row will contain the value “A”

The SELECT Clause (Cont.)

• SELECT clause can contain arithmetic expressions involving the operations *,
+, -, and /.
SELECT ID, name, salary/12.0
FROM instructor
This query would return a relation with the same number of records as the
‘instructor’ relation and the (ID, name, salary/12.0) where the yearly salary
is replaced by the monthly salary
We can rename the “salary/12.0” using the AS clause
SELECT ID, name, salary/12.0 as monthly_salary
FROM instructor

The WHERE Clause

• Specifies conditions that the result must satisfy
• Corresponds to the selection predicate of the relational algebra

• To find all students enrolled in the ‘Math.’ department
SELECT ID, name FROM student
WHERE dept_name = ‘Math.’

• Conditions can be also combined using logical operators (AND, OR, NOT)
• Find all students in the ‘Math.’ department who completed a minimum of 24 credits

SELECT ID, name FROM student
WHERE dept_name = ‘Math.’ AND tot_cred >= 24

• Comparisons =, <>, <, >, <=, >=

The FROM Clause

• Lists the relations involved in the query
• Corresponds to the Cartesian product operation of the relational algebra

• Find the Cartesian product ’ instructor’ X ’ teaches’
SELECT * FROM instructor, teaches
• Generates every possible instructor – teaches pair, with all attributes from both

relations.
• For common attributes (e.g., ID), the attributes in the resulting table are renamed

using the relation name (e.g., instructor.ID)
• Similar to the cartesian product in RA

• Cartesian product not very useful directly, but useful when combined with
where-clause condition.

SELECT-FROM-WHERE Examples

SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID
Returns the names of all instructors who have taught any courses and
the course_id
SELECT name, course_id
FROM instructor, teaches
WHERE instructor.ID = teaches.ID AND instructor.dept_name = ‘Art’
Returns the names of all instructors in the Art department who have
taught any courses and the course_id

The Rename Operation

• SQL allows renaming relations and attributes using the AS clause:
old-name AS new-name

• Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

SELECT DISTINCT T.name
FROM instructor AS T, instructor AS S
WHERE T.salary >= 75000 AND S.dept_name = ‘Comp. Sci.’
Returns the names of instructors in the ‘Comp. Sci.’ department joined with

whose salary is greater than or equal 75000

• Keyword AS is optional and may be omitted
instructor AS T ≡ instructor T

Renaming Example: Self-Join

• Sometimes, a query needs to use two copies of the same relation.
• Distinguish copies by renaming the relations.
• Example self-Join

SELECT T.name AS N1, S.name AS N2
FROM instructor T, instructor S
WHERE T.salary = S.salary AND T.name < S.name
• Returns the names of instructors who has the same salary
• Do not produce pairs like (Miller, Miller)
• Produces pairs in alphabetic order, e.g. (Adison, Miller), not (Miller, Adison)

• Note that we omit AS when renaming the relations

Join Operation

• JOIN operations take two relations and return as a result another
relation.
• A join operation is a Cartesian product which requires that tuples in

the two relations match (under some condition). It also specifies the
attributes that are present in the result of the join
• The join operations are typically used as subquery expressions in the

FROM clause

Join Operation (Cont.)

• We will consider the following relations in the few coming slides
• Relation course

course_id title dept_name credits

BIO-301 Genetics Biology 4

CS-490 Game Design Comp. Sci. 4

CS-315 Boolean Algebra Comp. Sci. 3

• Relation prereq
course_id prereq_id

BIO-301 BIO-101

CS-490 CS-101

CS-347 CS-201

• Note that:
• prereq information is missing for

course CS-315
• course information is missing for

course CS-347

Outer Join

• An extension of the join operation that avoids loss of information.
• Computes the join and then adds tuples form one relation that does

not match tuples in the other relation to the result of the join.
• Uses null values.

Left Outer Join
SELECT *
FROM course
LEFT OUTER JOIN prereq
ON course.course_id = prereq.course_id

course_id title dept_name credits prereq_id

BIO-301 Genetics Biology 4 BIO-101

CS-490 Game Design Comp. Sci. 4 CS-101

CS-315 Boolean Algebra Comp. Sci. 3 null

Right Outer Join

SELECT *
FROM course
RIGHT OUTER JOIN prereq
ON course.course_id = prereq.course_id

course_id prereq_id title dept_name credits

BIO-301 BIO-101 Genetics Biology 4

CS-490 CS-101 Game Design Comp. Sci. 4

CS-347 CS-201 null null null

• Remember:
• The order of the attributes in a

relation has no meaning

Full Outer Join

SELECT *
FROM course
FULL OUTER JOIN prereq
ON course.course_id = prereq.course_id

course_id prereq_id title dept_name credits

BIO-301 BIO-101 Genetics Biology 4

CS-490 CS-101 Game Design Comp. Sci. 4

CS-347 CS-201 null null null

CS-315 null Boolean Algebra Comp. Sci. 3

Inner Join

SELECT *
FROM course
INNER JOIN prereq
ON course.course_id = prereq.course_id

course_id prereq_id title dept_name credits

BIO-301 BIO-101 Genetics Biology 4

CS-490 CS-101 Game Design Comp. Sci. 4

• An SQL INNER JOIN is same as JOIN clause
• Question:

• What is the difference between the above JOIN and
the right/left outer join

String Operations

• SQL includes a string-matching operator for comparisons on character
strings.
• The operator LIKE uses patterns that are described using two special

characters
• Percent (%). The % character matches any substring.
• Underscore (_). The _ character matches any character.

• Example: find the names of all instructors whose name includes the
substring “Van der”

SELECT DISTINCT name
FROM instructor WHERE name LIKE ‘%Van der%’

String Operations (Cont.)

• Match the string “100%”
LIKE ‘100 \%’ ESCAPE '\'

in that above we use backslash (\) as the escape character
• Patterns are case sensitive.
• Pattern matching examples:

• ‘Intro%’ matches any string beginning with “Intro”.
• ‘%Comp%’ matches any string containing “Comp” as a substring.
• ‘_ _ _’ matches any string of exactly three characters.
• ‘_ _ _ %’ matches any string of at least three characters.

Range Queries

• SQL includes a BETWEEN comparison operator
• Example: Find the names of all instructors with salary between

$90,000 and $100,000 (that is, ³ $90,000 and £ $100,000)
SELECT name
FROM instructor
WHERE salary BETWEEN 90000 AND 100000

Tuple Comparison

SELECT name, course_id
FROM instructor, teaches
WHERE (instructor.ID, dept_name) = (teaches.ID, ‘Biology’)

Set Operations

• Find courses that ran in Fall 2009 or in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
UNION
SELECT course_id FROM section WHERE sem = ‘Spring’ AND year = 2010

• Find courses that ran in Fall 2009 and in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
INTERSECT
SELECT course_id FROM section WHERE sem = ‘Spring’ AND year = 2010

• Find courses that ran in Fall 2009 but not in Spring 2010
SELECT course_id FROM section WHERE sem = ‘Fall’ AND year = 2009
EXCEPT
SELECT course_id FROM section WHERE sem = ‘Spring’ AND year = 2010

Null Values

• It is possible for tuples to have a null value, denoted by NULL, for
some of their attributes
• null signifies an unknown value or that a value does not exist.
• The result of any arithmetic expression involving NULL is NULL

• Example: 5 + NULL returns NULL

• The predicate IS NULL can be used to check for null values.
• Example: Find all instructors whose salary is null.

SELECT name
FROM instructor
WHERE salary IS NULL

Null Values and Three Valued Logic
• Three values – true, false, unknown
• Any comparison with null returns unknown

• Example: 5 < null or null <> null or null = null
• Three-valued logic using the value unknown:

• OR: (unknown OR true) = true,
(unknown OR false) = unknown
(unknown OR unknown) = unknown

• AND: (true AND unknown) = unknown,
(false AND unknown) = false,
(unknown AND unknown) = unknown

• NOT: (NOT unknown) = unknown
• “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of WHERE clause predicate is treated as false if it evaluates to
unknown

∧ 𝑻 𝑭 𝑼

𝑻 T F U

𝑭 F F F

𝑼 U F U

∨ 𝑻 𝑭 𝑼

𝑻 T T T

𝑭 T F U

𝑼 T U U

The IN Operator
• <v> IN <S> evaluates to true if the value v matches one of the values

in S.
• It can be used to replace a sequence of conditions connected by OR
• Example:

SELECT name
FROM instructor
WHERE dept_name IN (’Comp. Sci.’, ’Math.’, ’Chem.’);

This Query is equivalent to:
SELECT name
FROM instructor
WHERE dept_name = ’Comp. Sci.’ OR dept_name = ’Math.’ OR dept_name =
’Chem.’

Aggregate Functions
• These functions operate on the multiset of values of a column of a

relation, and return a value
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate Functions (Cont.)
• Find the average salary of instructors in the Computer Science

department
SELECT AVG (salary)
FROM instructor
WHERE dept_name= ’Comp. Sci.’;

• Find the total number of instructors who taught a course in the Spring
2010 semester

SELECT COUNT (DISTINCT ID)
FROM teaches
WHERE semester = ’Spring’ AND year = 2010;

• Find the number of tuples in the course relation
SELECT COUNT (*)
FROM course;

Aggregate Functions (Cont.)
• Find the average salary of instructors in each department

SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor
GROUP BY dept_name;

ID name dept_name salary

22322 Einstein Physics 95000

33452 Gold Physics 87000

21212 Wu Finance 90000

10101 Brandt Comp. Sci. 82000

43521 Katz Comp. Sci. 75000

98531 Kim Biology 78000

58763 Crick Elec. Eng. 80000

52187 Mozart History 65000

32343 El Said History 86000

dept_name avg_salary

Physics 91000

Finance 90000

Comp. Sci. 78500

Biology 78000

Elec. Eng. 80000

History 75500

The query result

Aggregate Functions (Cont.)
• Find the average salary of instructors in each department which has average

salary greater than 80000 – use HAVING because WHERE cannot be used with
aggregate functions

SELECT dept_name, AVG (salary) AS avg_salary
FROM instructor GROUP BY dept_name
HAVING avg_salary > 80000;

ID name dept_name salary

22322 Einstein Physics 95000

33452 Gold Physics 87000

21212 Wu Finance 90000

10101 Brandt Comp. Sci. 82000

43521 Katz Comp. Sci. 75000

98531 Kim Biology 78000

58763 Crick Elec. Eng. 80000

52187 Mozart History 65000

32343 El Said History 86000

dept_name avg_salary

Physics 91000

Finance 90000

The query result

Subqueries
• SQL provides a mechanism for the nesting of subqueries.
• A subquery is a SELECT-FROM-WHERE expression that is nested within

another query.
• The nesting can be done in the following SQL query

SELECT 𝐴", 𝐴#, … , 𝐴$
FROM 𝑟", 𝑟#, … , 𝑟$
WHERE P

as follows:
• 𝐴# can be replaced be a subquery that generates a single value.
• 𝑟# can be replaced by any valid subquery
• P can be replaced with an expression of the form:

B <operation> (subquery)

Subqueries – Examples (Subquery in the WHERE clause)
• Find courses offered in Fall 2009 and in Spring 2010

SELECT DISTINCT course_id
FROM section
WHERE semester = ’Fall’ AND year = 2009 AND

course_id IN (SELECT course_id
FROM section
WHERE semester = ’Spring’ AND year= 2010);

Subqueries – Examples (Subquery in the FROM clause)
• Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.”
SELECT dept_name, avg_salary
FROM (SELECT dept_name, AVG (salary) AS avg_salary

FROM instructor
GROUP BY dept_name)

WHERE avg_salary > 42000;

Subqueries – Examples (Subquery in the SELECT clause)
• List all departments along with the number of instructors in each

department
SELECT dept_name,

(SELECT COUNT(*)
FROM instructor

WHERE department.dept_name = instructor.dept_name)
AS num_instructors

FROM department;

• Runtime error if subquery returns more than one result tuple
• Note that: subqueries are parenthesized SELECT-FROM-WHERE

statements

Wrap-Up

• Summarize what
you learned
today in 2-
minutes

Next lecture

• Process Discovery
• Conformance Checking

© Utrecht University

The information in this presentation has been compiled with the utmost care,
but no rights can be derived from its contents.

DISCLAIMER

59

Boolean Operators – Revision

Boolean Operators

• Searching through a database or search engine can often be
frustrating
• Boolean Operators create relationships between concepts and terms

for better search results
• Most popular Boolean operators are AND, OR and NOT

• The red areas represent the results of the operators

𝐴 𝐵 𝐴 𝐴𝑁𝐷 𝐵 𝐴 𝑂𝑅 𝐵 𝐴 𝐴𝑁𝐷 𝑁𝑂𝑇(𝐵)

AND (∧)

The red area – (𝐴 ∧ 𝐵)

• Retrieves only records that satisfy both
conditions

• Example:
name = “Taylor” AND dept_name = “Chem.”
Returns all instructors in the Chem. department
whose name is Taylor

𝑨 𝑩 𝑨 ∧ 𝑩

1 1 1

1 0 0

0 1 0

0 0 0

A B

OR (∨)

The red area – (𝐴 ∨ 𝐵)

• Retrieves records that satisfy one of the
conditions

• Example:
name = “Taylor” OR dept_name = “Chem.”
Returns all instructors with the name Taylor and
all instructors of the Chem. department

𝑨 𝑩 𝑨 ∨ 𝑩

1 1 1

1 0 1

0 1 1

0 0 0

A B

NOT (∼)

The red area – 𝐴 𝐴𝑁𝐷 𝑁𝑂𝑇(𝐵)

• Retrieves only records that satisfy the first
condition and doesn’t satisfy the second

• Example:
name = “Taylor” AND
NOT dept_name = “Chem.”
Returns all instructors with the name Taylor who
do not work in the Chem. department

𝑨 ∼ 𝑨

1 0

0 1

A B

Boolean Equivalence

• Equivalence of two Boolean operations can be easily proven using
truth tables
• Equivalence of Boolean operations is useful for optimizing the

Boolean queries
• Examples:

• ∼ (𝑨 ∧ 𝑩) ≡∼ 𝑨 ∨∼ 𝑩

• (𝑨 ∧ 𝑩) ∧∼ 𝑩 ≡ 𝑨 ∧ (𝑩 ∧∼ 𝑩) ≡ 𝒇𝒂𝒍𝒔𝒆
• (𝑨 ∧ 𝑩) ∨ (∼ 𝑩 ∧ 𝑪) ∨ (𝑨 ∧ 𝑪) ∨∼ (𝑨 ∧ 𝑪) ≡ (𝑨 ∧ 𝑪) ∨∼ (𝑨 ∧ 𝑪) ≡ 𝒕𝒓𝒖𝒆

𝑨 𝑩 (𝑨 ∧ 𝑩) ∼ (𝑨 ∧ 𝑩) ∼ 𝑨 ∨∼ 𝑩

1 1 1 0 0

1 0 0 1 1

0 1 0 1 1

0 0 0 1 1

≡

Proving Boolean Equivalence

• Truth Table: Helpful when the number of statements in the Boolean
expression is small
• Proof by contradiction: assume the expression is false/true and proof

that it leads to contradiction
• Using the Boolean axioms.

Boolean Axioms

• Let 𝑻 and 𝑭 represent the cases	of	always	True	and	always	False
• 𝑻 ∧ 𝑻 = 𝑻
• 𝑭 ∧ 𝑭 = 𝑭
• 𝑻 ∨ 𝑻 = 𝑻
• 𝑭 ∨ 𝑭 = 𝑭
• 𝑻 ∧ 𝑭 = 𝑭 ∧ 𝑻 = 𝑭
• 𝑻 ∨ 𝑭 = 𝑭 ∨ 𝑻 = 𝑻
• <𝑻 = 𝑭
• <𝑭 = 𝑻

Boolean Axioms

• Commutativity
• 𝑨 ∧ 𝑩 = 𝑩 ∧ 𝑨
• 𝑨 ∨ 𝑩 = 𝑩 ∨ 𝑨

• Identity
• 𝑨 ∧ 𝑻 = 𝑨
• 𝑨 ∨ 𝑻 = 𝑻
• 𝑨 ∧ 𝑭 = 𝑭
• 𝑨 ∨ 𝑭 = 𝑨

Boolean Axioms

• Idempotent
• 𝑨 ∧ 𝑨 = 𝑨
• 𝑨 ∨ 𝑨 = 𝑨

• Involution
• <<𝑨 = 𝑨

• Complement
• 𝑨 ∧ <𝑨 = 𝑭
• 𝑨 ∨ <𝑨 = 𝑻

Boolean Axioms

• Associativity
• 𝑨 ∧ 𝑩 ∧ 𝑪 = 𝑨 ∧ 𝑩 ∧ 𝑪
• 𝑨 ∨ 𝑩 ∨ 𝑪 = 𝑨 ∨ 𝑩 ∨ 𝑪

• Distributivity
• 𝑨 ∧ 𝑩 ∨ 𝑪 = 𝑨 ∧ 𝑩 ∨ 𝑨 ∧ 𝑪
• 𝑨 ∨ 𝑩 ∧ 𝑪 = 𝑨 ∨ 𝑩 ∧ 𝑨 ∨ 𝑪

Proving Boolean Equivalence

• Using the Boolean axioms (Example):
• prove that:

• LHS = 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ 𝐵 ∧ 𝐶 = 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ [𝐵 ∧ 𝐶 ∧ 𝑻]
= 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ [𝐵 ∧ 𝐶 ∧ 𝐴 ∨ ~𝐴]
= 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 ∨ [𝐵 ∧ 𝐶 ∧ 𝐴 ∨ 𝐵 ∧ 𝐶 ∧ ~𝐴]
= 𝐴 ∧ 𝐵 ∨ 𝐵 ∧ 𝐶 ∧ 𝐴 ∨ ∼ 𝐴 ∧ 𝐶 ∨ 𝐵 ∧ 𝐶 ∧ ~𝐴
= 𝐴 ∧ 𝐵 ∧ 𝑻 ∨ 𝐶 ∨ ∼ 𝐴 ∧ 𝐶 ∧ 𝑻 ∨ 𝐵
= 𝐴 ∧ 𝐵 ∨ ∼ 𝐴 ∧ 𝐶 = RHS

• 𝑻 means always TRUE.

(𝐴 ∧ 𝐵) ∨ (∼ 𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶) = (𝐴 ∧ 𝐵) ∨ (∼ 𝐴 ∧ 𝐶)

Read more FROM
John Kelly, The Essence of Logic (Prentice Hall, 1997)

Chapter 1 is good enough

