
Lab4: Functional Dependency

1 Exercises

Lossless decomposition of relations

• Suppose that we decompose the schema 𝑅 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) into

𝑅1 = (𝐴, 𝐵, 𝐶)
𝑅2 = (𝐴, 𝐷, 𝐸)

Show that this decomposition is a lossless decomposition if the following set ℱ
of functional dependencies holds:

𝐴 ↦ 𝐵𝐶
𝐶𝐷 ↦ 𝐸
𝐵 ↦ 𝐷
𝐸 ↦ 𝐴

Solution: A decomposition {𝑅1, 𝑅2} is a lossless decomposition if 𝑅1 ∩ 𝑅2 ↦ 𝑅1 or
𝑅1 ∩ 𝑅2 ↦ 𝑅2.
Let 𝑅1 = (𝐴, 𝐵, 𝐶), 𝑅2 = (𝐴, 𝐷, 𝐸), then 𝑅1 ∩ 𝑅2 = 𝐴. Since 𝐴 ↦ 𝐵𝐶 then 𝐴 ↦ 𝐵
and 𝐴 ↦ 𝐶. Therefore, 𝐴 ↦ 𝑅1. Hence 𝐴 is a candidate key in 𝑅1, which implies
that the 𝑅1 ∩ 𝑅2 ↦ 𝑅1.

BCNF

• Show that if we combine the relations instructor and department into in_dep
(ID, name, salary, dept_name, building, budget) then the resulting rela-
tion is not in Boyce–Codd normal form (BCNF).

Solution: For a relation 𝑅 to be in the BCNF, any FD 𝑋 ↦ 𝑌 with 𝑋 ⊆ 𝑅 and
𝑌 ⊆ 𝑅 should satisfy:

• Either 𝑋 ↦ 𝑌 is a trivial FD OR
• 𝑋 is a superkey for 𝑅

1



However, we know that 𝑑𝑒𝑝𝑡_𝑛𝑎𝑚𝑒 ↦ 𝑏𝑢𝑑𝑔𝑒𝑡 but 𝑑𝑒𝑝𝑡_𝑛𝑎𝑚𝑒 are two non-trivial
FDs whereas the 𝑑𝑒𝑝𝑡_𝑛𝑎𝑚𝑒 is not a superkey in the relation in_dep as multiple
instructors may work for the same department.

Alternative Definition of the Keys

• The Functional dependencies 𝑅(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺) is given:

ℱ ={
𝐴𝐵𝐷 ↦ 𝐸𝐺,
𝐶 ↦ 𝐷𝐺,
𝐸 ↦ 𝐹𝐺,
𝐴𝐵 ↦ 𝐶,
𝐺 ↦ 𝐹
}.

Find the candidate key for 𝑅.

Solution: We use Armstrong’s axioms to decompose and merge the FD’s and prove
that attributes 𝐴𝐵 determines all other attributes in the relation.

{𝐶 ↦ 𝐷𝐺 ⟹ { 𝐶 ↦ 𝐷
𝐶 ↦ 𝐺

⎧{{
⎨{{⎩

𝐴𝐵 ↦ 𝐶
𝐶 ↦ 𝐷
𝐶 ↦ 𝐺
𝐺 ↦ 𝐹

⟹
⎧{{
⎨{{⎩

𝐴𝐵 ↦ 𝐶
𝐴𝐵 ↦ 𝐷
𝐴𝐵 ↦ 𝐺
𝐴𝐵 ↦ 𝐹

{𝐴𝐵𝐷 ↦ 𝐸𝐺
𝐴𝐵 ↦ 𝐷 ⟹ 𝐴𝐵 ↦ 𝐸𝐺 ⟹ { 𝐴𝐵 ↦ 𝐸

𝐴𝐵 ↦ 𝐺

Since 𝐴𝐵 determines all the other attributes so 𝐴𝐵 is a key candidate and since no
single attribute can determine all other attributes, 𝐴𝐵 is a primary key.

Discovering FDs

• Given the relation:

A B C
a1 b1 c3
a1 b1 c3

2



a2 b1 c1
a2 b1 c1
a3 b1 c1

List all nontrivial functional dependencies satisfied by the relation.
Solution: The nontrivial functional dependencies are: 𝐴 ↦ 𝐵, 𝐶 ↦ 𝐵 and 𝐴 ↦ 𝐶.
By augmentation, we can derive that 𝐴𝐶 ↦ 𝐵 and 𝐴𝐵 ↦ 𝐶. 𝐶 does not functionally
determince 𝐴 because in the last three rows 𝐶 takes the value 𝐶1 whereas 𝐴 takes two
values 𝑎2 and 𝑎3.

Practical example

In the University Database (univdb-sqlite.db), perform the following tasks:

• Join the relations instructor and department into in_dep (ID, name,
salary, dept_name, building, budget) and display the content of the new
relation.

Solution: we start by creating a new table in_dep:

CREATE TABLE in_dep (
"ID" varchar(5),
"name" varchar(20) NOT NULL,
"i_dept_name" varchar(20),
"salary" numeric(8, 2) CHECK("salary" > 29000),
"d_dept_name" varchar(20),
"building" varchar(15),
"budget" numeric(12, 2) CHECK("budget" > 0)
);

After that, we copy the content of the join into the newly created table:
INSERT INTO in_dep SELECT * FROM instructor I
JOIN department D
on I.dept_name = D.dept_name

To display the content of the new relation, we use:
select * from in_dep

• Save the resulting relation in the database.

This step is done when we created the table and copied the results of the join query
inside the table.

• Split the relation back into two relation instructor_1 (ID, name, dept_name,
salary) and department_1(dept_name, building, budget).

3

https://www.db-book.com/university-lab-dir/sqlite-tips.html


Solution: we will create two new relations similar to the original relations of instructor
and department but we will not specifiy the primary/foreign keys as follow:

CREATE TABLE IF NOT EXISTS "instructor_1" (
"ID" varchar(5),
"name" varchar(20) NOT NULL,
"dept_name" varchar(20),
"salary" numeric(8, 2) CHECK("salary" > 29000)

);
INSERT INTO instructor_1 SELECT ID, name, i_dept_name, salary FROM in_dep;

Table instructor_1 will include exactly the same data as table instructor.
CREATE TABLE IF NOT EXISTS "department_1" (

"dept_name" varchar(20),
"building" varchar(15),
"budget" numeric(12, 2) CHECK("budget" > 0)

);
INSERT INTO department_1 SELECT d_dept_name, building, budget from in_dep

We will see that the table department_1 will contain duplicate records for those de-
partments with more than one professor. SQL allows for having duplicates. However,
we can copy only the recors with distinct dept_name as:

CREATE TABLE IF NOT EXISTS "department_1" (
"dept_name" varchar(20),
"building" varchar(15),
"budget" numeric(12, 2) CHECK("budget" > 0)

);
INSERT INTO department_1 SELECT distinct d_dept_name, building, budget from in_dep

• Compare the entries in the department relation with those in the department_1
and those in the instructor with those in the instructor_1. Comment on
your findings.

The new tables will include the same data as the original ones when inserting only
the distinct records in the table department_1. Based on that, if we join the tables
again then we will get the same table in_dep. That means, splitting table in_dep into
instructor_1 and department_1 is lossless decomposition.

• Now, split the relation back into two relation instructor_2 (ID, name,
dept_name, salary, budget) and department_2(building, budget).

We perform the same tasks as before.

4



CREATE TABLE IF NOT EXISTS "instructor_2" (
"ID" varchar(5),
"name" varchar(20) NOT NULL,
"dept_name" varchar(20),
"salary" numeric(8, 2) CHECK("salary" > 29000),
"budget" numeric(12, 2) CHECK("budget" > 0)

);
INSERT INTO instructor_2 SELECT ID, name, i_dept_name, salary, budget FROM in_dep;

CREATE TABLE IF NOT EXISTS "department_2" (
"building" varchar(15),
"budget" numeric(12, 2) CHECK("budget" > 0)

);
INSERT INTO department_2 SELECT building, budget FROM in_dep;

• Join relations instructor_2 and department_2 into in_dep_2 (ID, name,
salary, dept_name, building, budget)

CREATE TABLE in_dep_2(
"ID" varchar(5),
"name" varchar(20) NOT NULL,
"dept_name" varchar(20),
"salary" numeric(8, 2) CHECK("salary" > 29000),
"i_budget" numeric(12, 2) CHECK("budget" > 0),
"building" varchar(15),
"d_budget" numeric(12, 2) CHECK("budget" > 0)
);

INSERT INTO in_dep_2(ID, name, ) SELECT * FROM instructor_2 I
JOIN department_2 D
on I.budget = D.budget

• Compare the in_dep_2 relation with in_dep.

in_dep_2 will contain more records, which are duplicate. If we select only the distinct
records then we will have the same set of records because in the available data, the
budget contains unique values.

• Split back the in_dep_2 relation into instructor_2 (ID, name, dept_name,
salary) and department_2(dept_name, building, budget).

We will start by deleting the existing instructor_2 table and create a new one as
follows:

5



DROP TABLE instructor_2;
CREATE TABLE IF NOT EXISTS "instructor_2" (

"ID" varchar(5),
"name" varchar(20) NOT NULL,
"dept_name" varchar(20),
"salary" numeric(8, 2) CHECK("salary" > 29000)

);
INSERT INTO instructor_2 SELECT ID, name, dept_name, salary FROM in_dep_2;

Similarly, we will delete the existing department_2 table and create a new one:
DROP TABLE department_2;
CREATE TABLE IF NOT EXISTS "department_2" (

"dept_name" varchar(20),
"building" varchar(15),
"budget" numeric(12, 2) CHECK("budget" > 0)

);
INSERT INTO department_2 SELECT dept_name, building, d_budget FROM in_dep_2;

Compare the entries in the department relation with those in the department_2 and
those in the instructor with those in the instructor_2. Comment on your findings.
Tables instructor_2, department_2 will contain extra duplicate records. We can re-
move them using

SELECT distinct * from instructor_2

and
SELECT distinct * from department_2

We are sure that the second split is lossless. However, this is not completely clear using
the current database since the budget in the table department has unique values even
though the attribute is not a PRIMARY/UNIQUE key.

2 Discovering functional dependencies using Metanome

FD Discovery

Download the Metanome profiler and a set of the functional dependency discovery
algorithms, run one of the algorithms on csv file (you can find examples of datasets
on the same website), and report the discovered FDs. Metanome is built using JAVAso
you will need to install it on your computer.
Solution: You will need to follow the following steps:

• If you don’t have java on your machine, you will need to install it. Check link

6

https://hpi.de/naumann/projects/data-profiling-and-analytics/metanome-data-profiling.html
https://www.oracle.com/java/technologies/downloads/


for instructions and available versions.

• Download Metanome from the link.

• Extract the contents of the zip file and save the content in a folder of your choice.

• Download the algorithms Tane, fdep and FastFDs and move them inside the
folder (…../deployment-1.2-SNAPSHOT-package_with_tomcat/backend/WEB-
INF/classes/algorithms/).

• Open Windows Powershell or Mac/ Linux terminal and change the cur-
rent working directory to the directory (…../deployment-1.2-SNAPSHOT-
package_with_tomcat/) and type (./run.sh). You may need to use run.bat for
Windows. Wait until the server starts correctly.

• Open a web browser and type (http://localhost:8080/) in the address bar. You
will see the user interface of the tool. You should be able to see the algorithms
as in the figure below.

• Try to run one of the algorithms on the available datasets. and record your
findings.

• If you want to use your own data, copy the csv files into (…../deployment-1.2-
SNAPSHOT-package_with_tomcat/backend/WEB-INF/classes/inputData/).

Figure 1: Metanome Interface

7

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/repeatability/DataProfiling/Metanome/deployment-1.2-SNAPSHOT-package_with_tomcat.zip
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/repeatability/DataProfiling/Metanome_Algorithms/TANE-1.2-SNAPSHOT.jar
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/repeatability/DataProfiling/Metanome_Algorithms/FDep-1.2-SNAPSHOT.jar
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/repeatability/DataProfiling/Metanome_Algorithms/FastFDs-1.2-SNAPSHOT.jar

	Exercises
	Discovering functional dependencies using Metanome

